Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Daily dam releases on Deerfield River reduce downstream flows
by Staff Writers
Amherst MA (SPX) Apr 01, 2015


Hydrogeologists Brian Yellen and his advisor David Boutt recently reported results of the first study to document water losses from a river due to hydropeaking. Image courtesy UMass Amherst.

In the first-of-its-kind study of the environmental effects of hydropeaking, that is releasing water at hydropower dams to meet peak daily electricity demand, two University of Massachusetts Amherst researchers say their unexpected findings suggest that about 10 percent of released water may be permanently lost, making that water unavailable to downstream users and wildlife.

In the first study to document water losses due to hydropeaking, hydrogeologists Brian Yellen, who received his master's degree for the work, with his advisor assistant professor of geosciences David Boutt, report details in a recent issue of the journal Hydrological Processes.

Yellen says, "The most interesting thing we found is something we weren't looking for. That is, in this 13-mile stretch of the river, about 10 percent of water released from the dam every day gets pushed into the aquifer and is lost permanently."

The surprise finding is not going to end power companies' practice of hydropeaking, which allows the grid to operate more efficiently, Yellen acknowledges, "but we found a tradeoff that wasn't understood before. It's one additional tradeoff of which we're now aware. This is big news for downstream fish and fishermen, ecosystems, swimmers, boaters, municipal water supplies, industry and anyone else who uses water downstream from a dam. There may be water lost upstream that they are never going to see."

As he explains, "When you walk down a river in rainy places, as in New England, you expect the river to get bigger, not smaller. What we observe here is that the Deerfield River's flow actually decreases as you go downstream. Even though several small streams enter the river, hydropeaking drives enough water out of the river to overwhelm the additions from tributaries."

He and Boutt conducted their study on a stretch of the Deerfield River in remote western Massachusetts, from just below the Fife Brook Dam down to a U.S. Geological Survey river gauge in the village of Charlemont. The river depth changes daily in the area, rising about two feet when water is released from the dam and falling about two feet when the water release ends, Yellen notes.

"When it's low you can wade across, when it comes up you'll be up to your neck," he explains. "It's a natural lab where we can observe how these changes affect the groundwater or the aquifer that is right under the river, where river water and groundwater come into contact with one another. On the Deerfield, there is a flood every day."

The researchers came to their conclusions by estimating the flow of water into and out of a section of the Deerfield River using a variety of methods. Each showed that water was leaving the river due to dam operations. Further, a neighboring reference river that does not have hydropeaking showed the expected downstream increase in river flow.

Scientists once thought that when a dam release increases a river's depth, the "temporary flood" would have little effect on the groundwater in surrounding terrain. But at least in the heavily forested terrain near the Deerfield River, Yellen says, "Our data suggest that lost water is getting sucked up by trees in the valley that normally wouldn't have access to groundwater. But the groundwater table is being raised so high that the roots can reach it, and they take it."

Yellen clarifies that the water table doesn't rise up so high during the high-water floods so that tree roots are actually standing in it, but the soil toward the surface wicks water farther up so they can take some. "We knew this system would pump river water into the groundwater when the water is high," he adds. "We expected that process would occur, but we were surprised by the loss of 10 percent of the flood water daily."

He adds, "We present convincing evidence that hydropeaking raises the water table and makes it easier for trees on the bank to use that water. Every drop that the trees use is one less for the river and organisms that live there." On an undammed river, such a flood would happen naturally two or three times a year, but on the Deerfield River, "every single day there is a flood in the middle of the day and this is particularly true in summer."

Yellen and Boutt say further work is needed to determine how generalizable their result is, and whether the phenomenon is occurring on other rivers. "Dammed rivers all across the United States have hydropeaking and we expect that associated losses are occurring in other regions," Yellen says. "This was our test case. How widespread it is remains to be seen."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Mist-collecting plants may help alleviate global water shortages
Washington DC (SPX) Mar 31, 2015
Plants living in arid, mountainous and humid regions of the planet often rely on their leaves to obtain the moisture they need for survival by pulling mist out of the air. But how exactly they manage this feat has been a bit of a mystery - until now. By studying the morphology and physiology of plants with tiny conical "hairs" or microfibers on the surface of their leaves, such as tomatoes ... read more


WATER WORLD
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

WATER WORLD
Rover Amnesia Event Follows Latest Memory Reformatting

Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

WATER WORLD
NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

Russia, US to Jointly Prepare Mars, Moon Flight Road Map

WATER WORLD
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

WATER WORLD
Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

Soyuz spacecraft docks at ISS for year-long mission

One-Year Crew Set for Launch to Space Station

WATER WORLD
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

WATER WORLD
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

WATER WORLD
Study reveals novel technique for handling molecules

Twisted nanofibers create structures tougher than bulletproof vests

A method to simplify pictures makes chemistry calculations a snap

Metals used in high-tech products face future supply risks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.