. 24/7 Space News .
NUKEWARS
Cryptographic technique that may have applicability to future nuclear disarmament agreements
by Staff Writers
Princeton NJ (SPX) Sep 19, 2016


File image.

A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world.

"This is the first experimental demonstration of a physical zero-knowledge proof," said Sebastien Philippe, a graduate student in the Department of Mechanical and Aerospace Engineering at Princeton University and lead author of the paper. "We have translated a major method of modern cryptography devised originally for computational tasks into use for a physical system." Cryptography is the science of disguising information.

This research, supported by funding from the DOE's National Nuclear Security Administration through the Consortium for Verification Technology, marks a promising first experimental step toward a technique that could prove useful in future disarmament agreements, pending the results of further development, testing and evaluation.

While important questions remain, the technique, first proposed in a paper published in 2014 in Nature magazine, might have potential application to verify that nuclear warheads presented for disarmament were in fact true warheads. Support for this work came also from the John D. and Catherine T. MacArthur Foundation and the Carnegie Foundation of New York.

The research, outlined in a paper in Nature Communications on September 20, was conducted on a set of 2-inch steel and aluminum cubes arranged in different combinations. Researchers first organized the cubes into a designated "true" pattern and then into a number of "false" ones.

Next, they beamed high-energy neutrons into each arrangement and recorded how many passed through to "bubble" neutron detectors produced by Yale University, on the other side. When a neutron interacts with a "superheated" droplet in the detector, it creates a stable macroscopic bubble.

To avoid revealing information about the composition and configuration of the cubes, bubbles created in this manner were added to those already preloaded into the detectors. The preload was designed so that if a valid object were presented, the sum of the preload and the signal detected with the object present would equal the count produced by firing neutrons directly into the detectors - with no object in front of them.

The experiment found that the count for the "true" pattern equaled the sum of the preload and the object when neutrons were beamed with nothing in front of them, while the count for the significantly different "false" arrangements clearly did not.

"This was an extremely important experimental demonstration," said Robert Goldston, a fusion scientist and coauthor of the paper who is former director of PPPL and a Princeton professor of astrophysical sciences.

"We had a theoretical idea and have now provided a proven practical example." Joining him as coauthors are Alex Glaser, associate professor in Princeton's Woodrow Wilson School of Public and International Affairs and the Department of Mechanical and Aerospace Engineering; and Francesco d'Errico, senior research scientist at the Yale School of Medicine and professor at the University of Pisa, Italy.

When further developed for a possible arms control application, the technique would add bubbles from irradiation of a putative warhead to those already preloaded into detectors by the warhead's owner.

If the total for the new and preloaded bubbles equaled the count produced by beaming neutrons into the detectors with nothing in front of them, the putative weapon would be verified to be a true one. But if the total count for the preload plus warhead irradiation did not match the no-object count, the inspected weapon would be exposed as a spoof.

Prior to the test, the inspector would randomly select which preloaded detectors to use with which putative warhead, and which preload to use with a warhead that was, for example, selected from the owner's active inventory.

In a sensitive measurement, such as one involving a real nuclear warhead, the proposition is that no classified data would be exposed or shared in the process, and no electronic components that might be vulnerable to tampering or snooping would be used. Even statistical noise - or random variation in neutron measurement - would convey no data.

Indeed, "For the zero-knowledge property to be conserved, neither the signal nor the noise may carry information," the authors write. A necessary future step is to assess this proposition fully, and to develop and review a concept of operations in detail to determine actual viability and information sensitivity.

Important questions yet to be resolved include the details of obtaining and confirming a target warhead during the zero-knowledge measurement; specifics of establishing and maintaining the pre-loaded detectors in a way that ensures inspecting party confidence without revealing any data considered sensitive by the inspected party; and feasibility questions associated with safely deploying active interrogation measurement techniques on actual nuclear warheads in sensitive physical environments, in a way that provides confidence to both the inspected and inspecting parties.

Glaser, Goldston and Boaz Barak, a professor of computer science at Harvard University and former Princeton associate professor, first launched the concept for a zero-knowledge protocol for warhead verification in the 2014 paper in Nature magazine.

That paper led Foreign Policy magazine to name the authors among its "100 Leading Global Thinkers of 2014," and prompted other research centers to embark on similar projects.

"We are happy to see this important field of research gain new momentum and create new opportunities for collaboration between national laboratories and universities," Glaser said.

Seed money for the original work came to Princeton from The Simons Foundation of Vancouver, Canada, through a nonprofit called Global Zero, and from the U.S. Department of State Verification Assets Fund.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Learn about nuclear weapons doctrine and defense at SpaceWar.com
Learn about missile defense at SpaceWar.com
All about missiles at SpaceWar.com
Learn about the Superpowers of the 21st Century at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NUKEWARS
How do you solve a problem like North Korea?
Beijing (AFP) Sept 9, 2016
North Korea's fifth nuclear test is yet more evidence of how ineffective sanctions are in deterring Pyongyang while China is unwilling or unable to intervene, analysts say, with some arguing a new approach might be necessary - engagement. Since Pyongyang's first nuclear test sent tremors worldwide, it has been hit by five sets of United Nations sanctions over its atomic and missile programm ... read more


NUKEWARS
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

NUKEWARS
Opportunity departs Marathon Valley to head deeper into Endeavour Crater

Mars Rover Views Spectacular Layered Rock Formations

Storm Reduces Available Solar Energy on Opportunity

NASA Approves 2018 Launch of Mars InSight Mission

NUKEWARS
Astronaut returns home after logging record-breaking 534 days in space

'Star Trek' 50-year mission: to show the best of humanity

Vietnam's 'Silicon Valley' sparks startup boom

Taiwan tourism industry hit by drop in Chinese visitors

NUKEWARS
China's second space lab Tiangong-2 to be launched

Kuang-Chi near space test flight set for 2016

Vigil for Tiangong 2

Tiangong 2 is coming soon, real soon

NUKEWARS
US astronauts complete spacewalk for ISS maintenance

Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

NUKEWARS
What Happened to Sea Launch

SpaceX scours data to try to pin down cause rocket explosion on launch pad

India To Launch 5 Satellites In September

With operational acceptance complete, Western Range is ready for launch

NUKEWARS
New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

Could Proxima Centauri b Really Be Habitable

Rocky planet found orbiting habitable zone of nearest star

NUKEWARS
Towards the workplace of the future - with virtual reality

Deriving inspiration from the dragon tree

Developing composites that self-heal at very low temperatures

UMD physicists discover 'smoke rings' made of laser light









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.