Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Creating optical cables out of thin air
by Staff Writers
College Park MD (SPX) Jul 23, 2014


This is an illustration of an air waveguide. The filaments leave 'holes' in the air (red rods) that reflect light. Light (arrows) passing between these holes stays focused and intense. Image courtesy Howard Milchberg.

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at the University of Maryland, wants to do.

In a paper published in the journal Optica, Milchberg and his lab report using an "air waveguide" to enhance light signals collected from distant sources. These air waveguides could have many applications, including long-range laser communications, detecting pollution in the atmosphere, making high-resolution topographic maps and laser weapons.

Because light loses intensity with distance, the range over which such tasks can be done is limited. Even lasers, which produce highly directed beams, lose focus due to their natural spreading, or worse, due to interactions with gases in the air. Fiber-optic cables can trap light beams and guide them like a pipe, preventing loss of intensity or focus.

Typical fibers consist of a transparent glass core surrounded by a cladding material with a lower index of refraction. When light tries to leave the core, it gets reflected back inward. But solid optical fibers can only handle so much power, and they need physical support that may not be available where the cables need to go, such as the upper atmosphere.

Now, Milchberg's team has found a way to make air behave like an optical fiber, guiding light beams over long distances without loss of power.

Milchberg's air waveguides consist of a "wall" of low-density air surrounding a core of higher density air. The wall has a lower refractive index than the core-just like an optical fiber. In the Optica paper, Milchberg, physics graduate students Eric Rosenthal and Nihal Jhajj, and associate research scientist Jared Wahlstrand, broke down the air with a laser to create a spark. An air waveguide conducted light from the spark to a detector about a meter away.

The researchers collected a strong enough signal to analyze the chemical composition of the air that produced the spark.

The signal was 1.5 times stronger than a signal obtained without the waveguide. That may not seem like much, but over distances that are 100 times longer, where an unguided signal would be severely weakened, the signal enhancement could be much greater.

Milchberg creates his air waveguides using very short, very powerful laser pulses. A sufficiently powerful laser pulse in the air collapses into a narrow beam, called a filament. This happens because the laser light increases the refractive index of the air in the center of the beam, as if the pulse is carrying its own lens with it.

Milchberg showed previously that these filaments heat up the air as they pass through, causing the air to expand and leaving behind a "hole" of low-density air in their wake. This hole has a lower refractive index than the air around it.

While the filament itself is very short lived (less than one-trillionth of a second), it takes a billion times longer for the hole to appear. It's "like getting a slap to your face and then waiting, and then your face moves," according to Milchberg, who also has an appointment in the Institute for Research in Electronics and Applied Physics at UMD.

On Feb. 26, 2014, Milchberg and his lab reported in the journal Physical Review X that if four filaments were fired in a square arrangement, the resulting holes formed the low-density wall needed for a waveguide. When a more powerful beam was fired between these holes, the second beam lost hardly any energy when tested over a range of about a meter.

Importantly, the "pipe" produced by the filaments lasted for a few milliseconds, a million times longer than the laser pulse itself. For many laser applications, Milchberg says, "milliseconds is infinity."

Because the waveguides are so long-lived, Milchberg believes that a single waveguide could be used to send out a laser and collect a signal. "It's like you could just take a physical optical fiber and unreel it at the speed of light, put it next to this thing that you want to measure remotely, and then have the signal come all the way back to where you are," says Milchberg.

First, though, he needs to show that these waveguides can be used over much longer distances-50 meters at least. If that works, it opens up a world of possibilities. Air waveguides could be used to conduct chemical analyses of places like the upper atmosphere or nuclear reactors, where it's difficult to get instruments close to what's being studied.

The waveguides could also be used for LIDAR, a variation on radar that uses laser light instead of radio waves to make high-resolution topographic maps.

"Demonstration of Long-Lived High-Power Optical Waveguides in Air," N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, was published Feb. 26, 2014 in Physical Review X

.


Related Links
University of Maryland
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Rutgers Chemists Develop Clean-Burning Hydrogen Fuel
New Brunswick NJ (SPX) Jul 15, 2014
Rutgers researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel - a fuel that could replace expensive and environmentally harmful fossil fuels. The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules ... read more


ENERGY TECH
China's biggest moon challenge: returning to earth

Lunar Pits Could Shelter Astronauts, Reveal Details of How 'Man in the Moon' Formed

Manned mission to Moon scheduled by Roscosmos for 2020-2031

Landsat Looks to the Moon

ENERGY TECH
India could return to Mars as early as 2017

Curiosity's images show Earth-like soils on Mars

NASA Seeks Proposals for Commercial Mars Data Relay Satellites

Emirates paves way for Middle East space program with mission to Mars

ENERGY TECH
Voyager Spacecraft Might Not Have Reached Interstellar Space

New Fort Knox: A means to a solar-system-wide economy

Sierra Nevada Completes Major Dream Chaser NASA CCiCap Milestone

NASA Partners Punctuate Summer with Spacecraft Development Advances

ENERGY TECH
Lunar rock collisions behind Yutu damage

China to launch HD observation satellite this year

China's Fast Track To Circumlunar Mission

Chinese moon rover designer shooting for Mars

ENERGY TECH
Next ISS Cargo Spacecraft Rolls Out to Pad

Russian cargo craft docks with ISS, science satellite fails

Russian Cargo Craft Launches for 6-Hour Trek to ISS

ATV-5: loaded and locked

ENERGY TECH
SpaceX Soft Lands Falcon 9 Rocket First Stage

China to launch satellite for Venezuela

SpaceX Falcon 9 v1.1 Flights Deemed Successful

ISS 'space truck' launch postponed: Arianespace

ENERGY TECH
'Challenges' in quest to find water on Earth-like worlds: study

Transiting Exoplanet with Longest Known Year

Brown Dwarfs May Wreak Havoc on Orbits of Nearby Planets

NASA Mission To Reap Bonanza of Earth-sized Planets

ENERGY TECH
New material puts a twist in light

Efficient structures help build a sustainable future

Future Electronics May Depend on Lasers, Not Quartz

USAF orders ground approach radar for Saudi Arabia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.