. 24/7 Space News .
TIME AND SPACE
Coupling a nano-trumpet with a quantum dot enables precise position determination
by Staff Writers
Basel, Switzerland (SPX) Jul 18, 2017


Trumpet-shaped nanowires with a length of about 10 micrometers are coupled to quantum dots located at their bases. The movement of the nanowire can be detected with a sensitivity of 100 femtometers by changing the wavelength of the light emitted by the quantum dots. The arrows are important for fabrication and help to locate the nanowires. Image courtesy Grenoble Alps University.

Scientists from the Swiss Nanoscience Institute and the University of Basel have succeeded in coupling an extremely small quantum dot with 1,000 times larger trumpet-shaped nanowire. The movement of the nanowire can be detected with a sensitivity of 100 femtometers via the wavelength of the light emitted by the quantum dot.

Conversely, the oscillation of the nanowire can be influenced by excitation of the quantum dot with a laser. Nature Communications published the results.

Professor Richard Warburton and Argovia Professor Martino Poggio's teams in the Department of Physics and the Swiss Nanoscience Institute at the University of Basel worked with colleagues from Grenoble Alps University and the Alternative Energies and Atomic Energy Commission (CEA) in Grenoble to couple a microscopic mechanical resonator with a nano-scale quantum dot.

They used nanowires made of gallium arsenide that are about 10 micrometers long and have a diameter of a few micrometers at the top. The wires taper sharply downwards and therefore look like tiny trumpets arranged on the substrate. Near the base, which is only about 200 nanometers wide, the scientists placed a single quantum dot that can emit individual light particles (photons).

Excitations lead to strains
If the nanowire oscillates back and forth due to thermal or electrical excitation, the relatively large mass at the wide end of the nano-trumpet produces large strains in the wire that affect the quantum dot at the base.

The quantum dots are squeezed together and pulled apart; as a result, the wavelength and thus the color of the photons emitted by the quantum dot change. Although the changes are not particularly large, sensitive microscopes with very stable lasers - specifically developed in Basel for such measurements - are capable of precise detection of the wavelength changes.

The researchers can use the shifted wavelengths to detect the motion of the wire with a sensitivity of only 100 femtometers. They expect that by exciting the quantum dot with a laser, the oscillation of the nanowire can be increased or decreased as desired.

Potential uses in sensor and information technology

"We are particularly fascinated by the fact that a link between objects of such different sizes is possible," says Warburton. There are also various potential applications for this mutual coupling.

"For example, we can use these coupled nanowires as sensitive sensors to analyze electrical or magnetic fields," explains Poggio, who is investigating the possible applications with his team.

"It may also be possible to place several quantum dots on the nanowire, to use the motion to link them together and so pass on quantum information," adds Warburton, whose group focuses on the diverse use of quantum dots in photonics.

Artificial atoms with special properties
Quantum dots are nanocrystals, and are also known as artificial atoms because they behave similarly to atoms. With a typical extent of 10 to 100 nanometers, they are significantly larger than actual atoms. Their size and shape, as well as the number of electrons, can vary.

The electrons' freedom of movement in the quantum dots is significantly restricted; the resulting quantum effects give them very special optical, magnetic and electrical properties. For example, quantum dots are able to emit individual light particles (photons) after excitation, which can then be detected using a tailor-made laser microscope.

TIME AND SPACE
Spontaneous system follows rules of equilibrium
Chicago IL (SPX) Jul 18, 2017
Scientists have long known the ins and outs of equilibrium thermodynamics. Systems in equilibrium - a stable state of unchanging balance - are governed by a neat set of rules, making them predictable and easy to explore. "In equilibrium, there is a fantastic framework that is very well tested. There are almost no assumptions," said Northwestern Engineering's Erik Luijten. "The problem is that mo ... read more

Related Links
University of Basel
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Awards Mission Systems Operations Contract

Counting calories in space

NASA Offers Space Station as Catalyst for Discovery in Washington

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

TIME AND SPACE
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

TIME AND SPACE
Curiosity Mars Rover Begins Study of Ridge Destination

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

TIME AND SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TIME AND SPACE
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

TIME AND SPACE
Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Sorting complicated knots

Nature-inspired material uses liquid reinforcement

TIME AND SPACE
Molecular Outflow Launched Beyond Disk Around Young Star

Big, shape-shifting animals from the dawn of time

A New Search for Extrasolar Planets from the Arecibo Observatory

More to Life Than the Habitable Zone

TIME AND SPACE
Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis

Juno Completes Flyby over Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.