Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Could Ionized Gas Do A Better Job of Sterilizing Spacecraft
by Elizabeth Howell for Astrobiology Magazine
Moffet Field CA (SPX) Mar 03, 2015


"Plasma sterilization is a process not only compatible with modern spacecraft, but it also enables successful removal and inactivation of most resistant microbial species isolated in spacecraft assembly facilities," wrote Moeller in an e-mail to Astrobiology Magazine.

Earth's microbes are a hardy bunch. They can survive in extreme environments, such as inside hot springs at the bottom of the ocean. Some have even remained alive despite being exposed to the ultraviolet and ionizing radiation, extreme low temperatures, and vacuum of space.

This is why planetary protection advocates are so concerned about our exploration of other planets in the Solar System. Concerns about the contamination of the icy moon Europa, for example, prompted controllers of the Galileo mission to crash the spacecraft into Jupiter in 2003 so that microbes wouldn't accidentally take seed on what could be a habitable moon.

Nevertheless, despite the best efforts of spacecraft cleaners, some microbes seem to survive conventional cleaning processes. This is why a new method is emerging that uses ionized gas to kill the microbes.

The method was presented at the European Astrobiology Meeting in October, in an effort led by Ralf Moeller, a space microbiologist at the German Aerospace Center (DLR) and Katharina Stapelmann, a plasma researcher at Ruhr-University Bochum in Germany.

"Plasma sterilization is a process not only compatible with modern spacecraft, but it also enables successful removal and inactivation of most resistant microbial species isolated in spacecraft assembly facilities," wrote Moeller in an e-mail to Astrobiology Magazine.

"It is in the best interest of all spacefaring nations and research agencies, such as NASA and the European Space Agency (ESA), to characterize spacecraft-assembly inhibiting microorganisms thoroughly in order to assess their potential for forward contamination, and development of more effective reduction, cleaning, and sterilization technologies."

Cleanroom menaces
When a NASA mission leaves Earth, it is designed to meet internationally accepted standards for planetary protection established by the Committee on Space Research (COSPAR). This is a committee that was created in 1958 by the International Council for Science, a non-governmental organization with members from most of the countries of the world.

The standards for missions vary depending on what the goal of a particular spacecraft, noted Moeller. Perhaps a spacecraft is put on a trajectory that won't put it near the planet or moon's environment. Other standards address how it is assembled in a "clean room" on Earth, and how it is sterilized.

For most Mars missions - including fairly recent ones, such as Europe's Mars Express and NASA's Mars Exploration Rovers (Spirit and Opportunity) - scientists examined the microbial diversity of organisms that were left over after these steps.

"In most cases, spore-forming bacteria constituted a dominant fraction of those microorganisms cultivated after heat-shock treatment," Moeller said.

The standard protocol is to cook the microbes to 80 degrees Celsius (176 degrees Fahrenheit) for 15 minutes, he said. But there are highly resistant bacteria that can survive these treatments. In 2013, astrobiologists from Germany and the United States found a new bacterial variant called Tersicoccus phoenicis in two clean rooms on different continents.

"The presence of Tersicoccus phoenicis and other (spore- and non-spore forming) microbial species isolated from space craft assembly facilities exclusively in the cleanroom environments suggests selective adaptation and a significant role for these microorganisms in these environments," Moeller noted.

"Microbes residing in the clean rooms during the spacecraft assembly process could gain access to a spacecraft, and possibly survive en route to extraterrestrial systems."

Plasma purging
Last year, the researchers presented a newer form of sterilization at the European Astrobiology Meeting. The method involves using plasma - an ionized gas - at low pressure on the spacecraft.

"The method is very fast. Full spore inactivation of 100 million of bacterial spores was achieved in five minutes, even with spores of Bacillus pumilus SAFR-032, a space craft assembly facility isolate, which encounters the highest resistance to UV radiation and further sterilization methods," wrote Stapelmann in the same e-mail.

There are other benefits to using plasma. The method doesn't require using toxic or possibly cancer-causing substances such as ethylene oxide; it can be used in small doses; and it appears to be effective against spores from bacteria, fungi and prions (an infectious kind of protein).

"So far, the method is not used for spacecraft in development yet. Another method based on plasma but operated under atmospheric pressure is planned to be used on the International Space Station, if a recent proposal is accepted," Stapelmann said.

Stapelmann's and Moeller's method may take some time to gain acceptance, given that there are already established procedures in place. The current methods of sterilizing surfaces in general (not spacecraft) involve high pressure, high temperature, and radiation through ultraviolet or gamma rays, Moeller pointed out. There are drawbacks to these methods, namely they can damage the underlying material, leave residues and create microbial resistances.

On spacecraft, there are only two accepted methods so far: dry heat (cooking the surface at 111.7 degrees Celsius, or 233 degrees Fahrenheit for 30 hours) or using hydrogen peroxide.

"Both methods, either through elevated temperatures or aggressive chemical reaction, are likely to introduce damage to advanced materials, such as electronics and other heat-sensitive equipment," Moeller said. "Plasma sterilization is emerging as an alternative to commonly used sterilization techniques, due to many advantages. It's cost-effective, fast, efficient, and safe in terms of thermal, chemical, or irradiation damage."

Applications beyond space
Moeller and Stapelmann are part of a growing community looking at plasma for spacecraft sterilization. Research on using plasma sterilization of Planetary Protection purposes includes a January 2014 article in the journal Planetary and Space Science called "Cold atmospheric plasma - A new technology for spacecraft component decontamination," led by Satoshi Shimizu at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. In their study, Shimizu et. al. are using solely the indirect effects of plasma, such as long-living reactive oxygen species.

While both methods are based on sterilizing with plasma, Stapelmann said, they propose using it in direct contact with the spores. The reported results for Stapelmann and Moeller's method are an 8-logarithmic reduction of bacterial spores in five minutes, as opposed to a 5-6 log reduction of spores in 90 minutes with Shimizu et. al.

Stapelmann argues that their sterilization process - which relies on more direct contact with the spacecraft - is more efficient than Shimizu's, as it kills more spores in a shorter treatment time. However, the treatment is harsh on electronics because the electronics are exposed directly to the electric field of the plasma, so Shimizu's treatment would be preferable to Stapelmann's.

Still, Stapelmann said their methods could use improvement as it is considered for use on spacecraft. In general, it is hard to treat a spacecraft because it is small and tends to have metal jutting out in odd ways. Also, low-pressure plasma systems require plasma chambers and vacuum pumps to get the job done, which can add some cost to the project. For using plasma sterilization on the ISS, an atmospheric-pressure plasma is planned, reducing the costs and the footprint of the system.

Beyond space exploration, Stapelmann points out that there are other uses as well.

"The plasma sterilization system was initially built for the sterilization of medical instruments. Our group has a lot of experience with low-pressure plasma sterilization systems. A first commercial plasma sterilization system was developed and built in cooperation with our institute."

Read more details about the commercial use in this paper from Plasma Processes and Polymers, called "Plasma Sterilization of Pharmaceutical Products: From Basics to Production." It was led by Ruhr-University Bochum's Benjamin Denis.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
Tributes pour in for Leonard Nimoy, aka Mr Spock
Los Angeles (AFP) Feb 27, 2015
President Barack Obama joined Leonard Nimoy's co-stars from "Star Trek" to bid adieu to the actor who died Friday aged 83 after making his name as "Mr Spock." "Long before being nerdy was cool, there was Leonard Nimoy," said Obama, who recalled meeting the Boston-born Nimoy with the Vulcan salute in 2007. More than a household name, Nimoy was a "lifelong lover of the arts and humanities, ... read more


EXO LIFE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

EXO LIFE
Curiosity confirms methane in Mars' atmosphere

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

EXO LIFE
Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

Fast visas and dim sum: Spain seeks to attract Chinese tourists

EXO LIFE
Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

EXO LIFE
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

Spacewalk to go ahead on Sunday despite helmet leak

Russia to use International Space Station till 2024

EXO LIFE
SpaceX launches two communications satellites

Next Launch of Heavy Angara-5 Rocket Due Next Year

SES Announces Two Launch Agreements With SpaceX

Soyuz Installed at Baikonur, Expected to Launch Wednesday

EXO LIFE
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

EXO LIFE
Australia researchers create 'world first' 3D-printed jet engines

Watching bonds form using femtosecond X-ray liquidography

New research predicts when, how materials will act

ADS delivers LISA Pathfinder propulsion and science modules for testing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.