Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TIME AND SPACE
Cosmic connection found in both human cells and neutron stars
by Staff Writers
Santa Barbara CA (SPX) Nov 02, 2016


Greg Huber, deputy director of UCSB's Kavli Institute for Theoretical Physics. Image courtesy Sonia Fernandez.

We humans may be more aligned with the universe than we realize. According to research published in the journal Physical Review C, neutron stars and cell cytoplasm have something in common: structures that resemble multistory parking garages.

In 2014, UC Santa Barbara soft condensed-matter physicist Greg Huber and colleagues explored the biophysics of such shapes - helices that connect stacks of evenly spaced sheets - in a cellular organelle called the endoplasmic reticulum (ER). Huber and his colleagues dubbed them Terasaki ramps after their discoverer, Mark Terasaki, a cell biologist at the University of Connecticut.

Huber thought these "parking garages" were unique to soft matter (like the interior of cells) until he happened upon the work of nuclear physicist Charles Horowitz at Indiana University. Using computer simulations, Horowitz and his team had found the same shapes deep in the crust of neutron stars.

"I called Chuck and asked if he was aware that we had seen these structures in cells and had come up with a model for them," said Huber, the deputy director of UCSB's Kavli Institute for Theoretical Physics (KITP). "It was news to him, so I realized then that there could be some fruitful interaction."

The resulting collaboration, highlighted in Physical Review C, explored the relationship between two very different models of matter.

Nuclear physicists have an apt terminology for the entire class of shapes they see in their high-performance computer simulations of neutron stars: nuclear pasta. These include tubes (spaghetti) and parallel sheets (lasagna) connected by helical shapes that resemble Terasaki ramps.

"They see a variety of shapes that we see in the cell," Huber explained. "We see a tubular network; we see parallel sheets. We see sheets connected to each other through topological defects we call Terasaki ramps. So the parallels are pretty deep."

However, differences can be found in the underlying physics. Typically matter is characterized by its phase, which depends on thermodynamic variables: density (or volume), temperature and pressure - factors that differ greatly at the nuclear level and in an intracellular context.

"For neutron stars, the strong nuclear force and the electromagnetic force create what is fundamentally a quantum-mechanical problem," Huber explained. "In the interior of cells, the forces that hold together membranes are fundamentally entropic and have to do with the minimization of the overall free energy of the system. At first glance, these couldn't be more different."

Another difference is scale. In the nuclear case, the structures are based on nucleons such as protons and neutrons and those building blocks are measured using femtometers (10-15). For intracellular membranes like the ER, the length scale is nanometers (10-9). The ratio between the two is a factor of a million (10-6), yet these two vastly different regimes make the same shapes.

"This means that there is some deep thing we don't understand about how to model the nuclear system," Huber said. "When you have a dense collection of protons and neutrons like you do on the surface of a neutron star, the strong nuclear force and the electromagnetic forces conspire to give you phases of matter you wouldn't be able to predict if you had just looked at those forces operating on small collections of neutrons and protons."

The similarity of the structures is riveting for theoretical and nuclear physicists alike. Nuclear physicist Martin Savage was at the KITP when he came across graphics from the new paper on arXiv, a preprint library that posts thousands of physics, mathematics and computer science articles. Immediately his interest was piqued.

"That similar phases of matter emerge in biological systems was very surprising to me," said Savage, a professor at the University of Washington. "There is clearly something interesting here."

Co-author Horowitz agreed. "Seeing very similar shapes in such strikingly different systems suggests that the energy of a system may depend on its shape in a simple and universal way," he said.

Huber noted that these similarities are still rather mysterious. "Our paper is not the end of something," he said. "It's really the beginning of looking at these two models."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of California - Santa Barbara
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Physicists make it possible to 3-D print your own baby universe
London, UK (SPX) Nov 02, 2016
Researchers have created a 3D printed cosmic microwave background - a map of the oldest light in the universe - and provided the files for download. The cosmic microwave background (CMB) is a glow that the universe has in the microwave range that maps the oldest light in the universe. It was imprinted when the universe first became transparent, instead of an opaque fog of plasma and radiation. ... read more


TIME AND SPACE
BRICS Space Agencies Sign Memorandum on Cooperation in Space Exploration

Next stop Baikonur for ESA astronaut Thomas Pesquet

Japan rocket with manga art launches satellite into space

Clearing the Air in Space

TIME AND SPACE
Aerojet Rocketdyne completes CST launch abort engine hot fire tests

China launches first heavy-lift rocket

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

TIME AND SPACE
Unusual Martian region leaves clues to planet's past

A record of ancient tectonic stress on Mars

Mars: How Will Humans Get There

Curiosity Mars Rover Checks Odd-looking Iron Meteorite

TIME AND SPACE
Kuaizhou-1 scheduled to launch in December

Nations ask to play part in space lab

China launches first heavy-lift rocket

China to launch Long March-5 carrier rocket in November

TIME AND SPACE
Optus achieves full certification of 4 teleports

ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

TIME AND SPACE
Testing AsiaSat 9 in a Simulated Space Environment

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Researchers bring eyewear-free 3-D capabilities to small screen

When it comes to atomic-scale manufacturing, less really is more

TIME AND SPACE
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

TIME AND SPACE
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement