. 24/7 Space News .
STELLAR CHEMISTRY
Cosmic beacons reveal the Milky Way's ancient core
by Staff Writers
Potsdam, Germany (SPX) Apr 25, 2016


The plane of our Galaxy as seen in infrared light from the WISE satellite. (Credit: NOAO/AURA/NSF/AIP/A. Kunder)

An international team of astronomers led by Dr. Andrea Kunder of the Leibniz Institute for Astrophysics Potsdam (AIP) in Germany has discovered that the central 2,000 light-years within the Milky Way galaxy hosts an ancient population of stars. These stars are more than 10 billion years old and their orbits in space preserve the early history of the formation of the Milky Way.

For the first time the team kinematically disentangled this ancient component from the stellar population that currently dominates the mass of the central galaxy. The astronomers used the AAOmega spectrograph on the Anglo Australian Telescope near Siding Spring, Australia, and focused on a well-known and ancient class of stars, called RR Lyrae variables.

These stars pulsate in brightness roughly once a day, which make them more challenging to study than their static counterparts, but they have the advantage of being "standard candles." RR Lyrae stars allow exact distance estimations and are found only in stellar populations more than 10 billion years old, for example, in ancient halo globular clusters.

The velocities of hundreds of stars were simultaneously recorded toward the constellation of Sagittarius over an area of the sky larger than the full Moon. The team therefore was able to use the age stamp on the stars to explore the conditions in the central part of our Milky Way when it was formed.

Just as London and Paris are built on more ancient Roman or even older remains, our Milky Way galaxy also has multiple generations of stars that span the time from its formation to the present. Since heavy elements, referred to by astronomers as "metals," are brewed in stars, subsequent stellar generations become more and more metal-rich.

Therefore, the most ancient components of our Milky Way are expected to be metal-poor stars. Most of our galaxy's central regions are dominated by metal-rich stars, meaning that they have approximately the same metal content as our Sun, and are arrayed in a football-shaped structure called the "bar."

These stars in the bar were found to orbit in roughly the same direction around the galactic center. Hydrogen gas in the Milky Way also follows this rotation. Hence it was widely believed that all stars in the center would rotate in this way.

But to the astronomers' astonishment, the RR Lyrae stars do not follow football-shaped orbits, but have large random motions more consistent with their having formed at a great distance from the center of the Milky Way.

"We expected to find that these stars rotate just like the rest of the bar," states lead investigator Kunder.

Coauthor Juntai Shen of the Shanghai Astronomical Observatory adds, "They account for only one percent of the total mass of the bar, but this even more ancient population of stars appears to have a completely different origin than other stars there, consistent with having been one of the first parts of the Milky Way to form."

The RR Lyrae stars are moving targets - their pulsations result in changes in their apparent velocity over the course of a day. The team accounted for this, and was able to show that the velocity dispersion or random motion of the RR Lyrae star population was very high relative to the other stars in the Milky Way's center.

The next steps will be to measure the exact metal content of the RR Lyrae population, which gives additional clues to the history of the stars, and enhance by three or four times the number of stars studied, that presently stands at almost 1,000.

Research paper: "Before the Bar: Kinematic Detection of a Spheroidal Metal-Poor Bulge Component," Andrea Kunder et al., 2016 Apr. 20, Astrophysical Journal Letters, Vol. 821, No. 2


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Leibniz Institute for Astrophysics Potsdam
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Hubble's journey to the center of our galaxy
Greenbelt MD (SPX) Apr 05, 2016
Peering deep into the heart of our Milky Way galaxy, NASA's Hubble Space Telescope reveals a rich tapestry of more than half a million stars. Except for a few blue foreground stars, the stars are part of the Milky Way's nuclear star cluster, the most massive and densest star cluster in our galaxy. So packed with stars, it is equivalent to having a million suns crammed between us and our cl ... read more


STELLAR CHEMISTRY
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

STELLAR CHEMISTRY
NASA seeks industry ideas for an advanced Mars satellite

Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

STELLAR CHEMISTRY
Menstruation in spaceflight: Options for astronauts

Mobile phone technology propels Starshot's ET space search

A US Department of Space

NASA blasts Orion Service Module with giant horns

STELLAR CHEMISTRY
Chinese scientists develop mammal embryos in space for first time

Re-entry capsule of SJ-10 lands in Northern China

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

STELLAR CHEMISTRY
US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

STELLAR CHEMISTRY
Soyuz meets its multi-satellite payload for Friday's Arianespace launch

Europe to launch satellites for Earth, Einstein

Sentinel-1B in position for liftoff

Arianespace cooperation with Russia remains smooth amid sanctions

STELLAR CHEMISTRY
Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

STELLAR CHEMISTRY
NASA studies 3D printing for building densely populated electronics

Thanks, actin, for the memories

Electrons slide through the hourglass on surface of bizarre material

Simple 3-D fabrication technique for bio-inspired hierarchical structures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.