Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Cosmic barometer' could reveal violent events in universe's past
by Staff Writers
London, UK (SPX) Apr 01, 2014


File image.

Exploding stars, random impacts involving comets and meteorites, and even near misses between two bodies can create regions of great heat and high pressure.

Researchers from Imperial College London have now developed a method for analysing the pressure experienced by tiny samples of organic material that may have been ejected from dying stars before making a long journey through the cosmos. The researchers have investigated a type of aromatic hydrocarbon called dimethylnaphthalene, which should enable them to identify violent events in the history of the universe.

Samples of dimethylnaphthalene are found in meteorites. Previously, scientists have only had the ability to investigate how they have been affected by heat. The Imperial researchers say their method for detecting periods when dimethylnaphthalenes have experienced high pressure will now allow for a much more comprehensive analysis of organic materials.

Dr Wren Montgomery, co-author from the Department of Earth Science and Engineering at Imperial College London, says: "The ability to detect high pressure environments in space has tremendous implications for our ability to learn more about the formation of our solar system and the universe. Dimethylnaphthalenes are like microscopic barometers and thermometers recording changes in pressure and heat as they travel through space. Understanding these changes lets us probe their history, and with that, the history of the galaxy."

In the study, the researchers placed a sample of dimethylnaphthalene, the width of a human hair, between the vice like grip of two anvils made out of gem-quality diamonds in a laboratory at the Swiss Light Source.

They then applied pressure, recreating the type of high pressure environment that dimethylnaphthalene could experience in space. Using an infrared light from the synchrotron at the facility, Dr Montgomery and her colleagues were able to clearly determine the alterations that happen to the molecular structure of dimethylnaphthalene when experiencing high pressure.

By applying different pressures, the team were able to vary the change in the molecular structure of dimethylnaphthalene, giving an insight into how different types of pressures in space would alter the molecular structure of the organic material.

The researchers also recreated the experiments at the Paul Scherrer Institut in Switzerland and SOLEIL Synchrotron in France to verify their research.

The next step will see the team carrying out more lab work where they will be subjecting other types of aromatic hydrocarbons to a range of pressures experienced in space. Dimethylnaphthalene may not always be present in rock samples, so the researchers say it is important to build up a comprehensive catalogue of all aromatic hydrocarbons to understand more about high pressure zones.

This catalogue would be used by scientists in the field to detect molecular markers in their samples that indicate a particular pressure range. Combined with data about the mineralogy and chemistry of the space rock that the aromatic hydrocarbons are encased in, scientists could then deduce the types of violent events that the sample may have been exposed to many millions or billions of years ago on its way to Earth.

The team also believe that their new technique could be applied on Mars, potentially using the existing technology on-board roving laboratories such as the one on the Mars Science Laboratory Mission to glean information about sources of organic matter on the red planet. Recognising the pressures recorded in the aromatic hydrocarbons can help to reveal whether it came from processes generated from ancient living organisms.

Professor Mark Sephton, co-author from the Department of Earth Science and Engineering at Imperial, says: "We now have another instrument to add to our celestial toolbox, which will help us to learn more about high pressure environments in space. Massive heat and pressure waves arcing out through space from cataclysmic events leave an indelible record in these cosmic barometers. It is really exciting to know that we now have a technique at our disposal that will help to reveal pivotal moments in the universe's history."

"An organic cosmo-barometer: distinct pressure and temperature effects for methyl substituted polycyclic aromatic hydrocarbons", The Astrophysical Journal, published in hard copy on Tuesday 1 April 2014.

.


Related Links
Imperial College London
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Creating virtual universes
Melbourne, Australia (SPX) Mar 31, 2014
Swinburne University of Technology has launched a free online astronomy virtual laboratory that will allow scientists to build complex customised views of the Universe, all from the comfort of their own computer. The Theoretical Astrophysical Observatory (TAO), funded by the Australian Government's $48 million NeCTAR project, draws on the power of Swinburne's gSTAR GPU supercomputer to all ... read more


TIME AND SPACE
Unique camera from NASA's moon missions sold at auction

Expeditions to the Moon: beware of meteorites

A Wet Moon

ASU camera creates stunning mosaic of moon's polar region

TIME AND SPACE
Mars yard ready for Red Planet rover

Mars One building simulated colony to vet potential colonists

Cleaner NASA Rover Sees Its Shadow in Martian Spring

The Opposition of Mars

TIME AND SPACE
NASA Marks Major Milestone for Spaceport of the Future

High School 'Final Five' Compete for Out-of-This-World Test on Orion

You've got mail: Clinton-to-space laptop up for auction

The NASA Z-2 Spacesuit Design Vote

TIME AND SPACE
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

TIME AND SPACE
Soyuz Docking Delayed Till Thursday as Station Crew Adjusts Schedule

US, Russian astronauts take new trajectory to dock the ISS

Software glitch most probable cause of Soyuz TMA-12 taking two day approach

Russian spacecraft brings three-man crew to ISS after two-day delay

TIME AND SPACE
Arianespace's seventh Soyuz mission from French Guiana is readied for liftoff next week

Boeing wins contract to design DARPA Airborne Satellite Launch

NASA Seeks Suborbital Flight Proposals

Arianespace Launches ASTRA 5B and Amazonas 4A

TIME AND SPACE
Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

TIME AND SPACE
Space Observation Optics Cover from IR to X-ray Wavelengths

Saab continues support of military simulation system

China's rare earth trade limits break global rules: WTO

Intel bets big on cloud, with stake in Cloudera




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.