Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Copper clusters capture and convert carbon dioxide to make fuel
by Staff Writers
Lemont IL (SPX) Aug 12, 2015


A copper tetramer catalyst created by researchers at Argonne National Laboratory may help capture and convert carbon dioxide in a way that ultimately saves energy. It consists of small clusters of four copper atoms each, supported on a thin film of aluminum oxide. These catalysts work by binding to carbon dioxide molecules, orienting them in a way that is ideal for chemical reactions. The structure of the copper tetramer is such that most of its binding sites are open, which means it can attach more strongly to carbon dioxide and can better accelerate the conversion. Image courtesy Larry Curtiss, Argonne National Laboratory. For a larger version of this image please go here.

Capture and convert--this is the motto of carbon dioxide reduction, a process that stops the greenhouse gas before it escapes from chimneys and power plants into the atmosphere and instead turns it into a useful product.

One possible end product is methanol, a liquid fuel and the focus of a recent study conducted at the U.S. Department of Energy's (DOE) Argonne National Laboratory. The chemical reactions that make methanol from carbon dioxide rely on a catalyst to speed up the conversion, and Argonne scientists identified a new material that could fill this role. With its unique structure, this catalyst can capture and convert carbon dioxide in a way that ultimately saves energy.

They call it a copper tetramer.

It consists of small clusters of four copper atoms each, supported on a thin film of aluminum oxide. These catalysts work by binding to carbon dioxide molecules, orienting them in a way that is ideal for chemical reactions. The structure of the copper tetramer is such that most of its binding sites are open, which means it can attach more strongly to carbon dioxide and can better accelerate the conversion.

The current industrial process to reduce carbon dioxide to methanol uses a catalyst of copper, zinc oxide and aluminum oxide. A number of its binding sites are occupied merely in holding the compound together, which limits how many atoms can catch and hold carbon dioxide.

"With our catalyst, there is no inside," said Stefan Vajda, senior chemist at Argonne and the Institute for Molecular Engineering and co-author on the paper. "All four copper atoms are participating because with only a few of them in the cluster, they are all exposed and able to bind."

To compensate for a catalyst with fewer binding sites, the current method of reduction creates high-pressure conditions to facilitate stronger bonds with carbon dioxide molecules. But compressing gas into a high-pressure mixture takes a lot of energy.

The benefit of enhanced binding is that the new catalyst requires lower pressure and less energy to produce the same amount of methanol.

Carbon dioxide emissions are an ongoing environmental problem, and according to the authors, it's important that research identifies optimal ways to deal with the waste.

"We're interested in finding new catalytic reactions that will be more efficient than the current catalysts, especially in terms of saving energy," said Larry Curtiss, an Argonne Distinguished Fellow who co-authored this paper.

Copper tetramers could allow us to capture and convert carbon dioxide on a larger scale--reducing an environmental threat and creating a useful product like methanol that can be transported and burned for fuel.

Of course the catalyst still has a long journey ahead from the lab to industry.

Potential obstacles include instability and figuring out how to manufacture mass quantities. There's a chance that copper tetramers may decompose when put to use in an industrial setting, so ensuring long-term durability is a critical step for future research, Curtiss said. And while the scientists needed only nanograms of the material for this study, that number would have to be multiplied dramatically for industrial purposes.

Meanwhile, the researchers are interested in searching for other catalysts that might even outperform their copper tetramer.

These catalysts can be varied in size, composition and support material, which results in a list of more than 2,000 potential combinations, Vajda said.

But the scientists don't have to run thousands of different experiments, said Peter Zapol, an Argonne physicist and co-author of this paper. Instead, they will use advanced calculations to make predictions, and then test the catalysts that seem most promising.

"We haven't yet found a catalyst better than the copper tetramer, but we hope to," Vajda said. "With global warming becoming a bigger burden, it's pressing that we keep trying to turn carbon dioxide emissions back into something useful."

For this research, the team used the Center for Nanoscale Materials as well as beamline 12-ID-C of the Advanced Photon Source, both DOE Office of Science User Facilities.

Curtiss said the Advanced Photon Source allowed the scientists to observe ultralow loadings of their small clusters, down to a few nanograms, which was a critical piece of this investigation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Argonne National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
World's quietest gas lets physicists hear faint quantum effects
Berkeley CA (SPX) Aug 05, 2015
Physicists at the University of California, Berkeley, have cooled a gas to the quietest state ever achieved, hoping to detect faint quantum effects lost in the din of colder but noisier fluids. While the ultracold gas's temperature - a billionth of a degree above absolute zero - is twice as hot as the record cold, the gas has the lowest entropy ever measured. Entropy is a measure of disord ... read more


TIME AND SPACE
NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

TIME AND SPACE
Six scientists to spend 365 days in HI-SEAS simulated Mars trip

Buckingham astrobiologists to look for life on Mars

NASA Mars Orbiter Preparing for Mars Lander's 2016 Arrival

New Website Gathering Public Input on NASA Mars Images

TIME AND SPACE
Third spaceflight for astronaut Paolo Nespoli

New rocket could one day launch flight to Europa

ISU Educates Future Space Leaders

Domes Arrive for CST-100 Test Article Assembly

TIME AND SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

TIME AND SPACE
NASA signs $490 mn contract with Russia for ISS travel

Space Kombucha in the search for life and its origin

Political Tensions Have No Impact on Space Cooperation- Roscosmos

RED epic dragon camera captures riveting images on space station

TIME AND SPACE
Payload checkout is advancing for Arianespace's September Soyuz flight

Payload fit-check for next Ariane 5 mission

SMC goes "2-for-2" on weather delayed launch

China tests new carrier rocket

TIME AND SPACE
Overselling NASA

Exoplanets 20/20: Looking Back to the Future

Study: All planetary rings governed by particle distribution principle

An exceptional planetary system discovered in Cassiopeia

TIME AND SPACE
NYU scientists bring order, and color, to microparticles

Cooking up altered states

Satcoms Linking Rural Schools in South Africa and Italy

A droplet's pancake bounce




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.