Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Controlling ultrafast electrons in motion
by Staff Writers
Sendai, Japan (SPX) Feb 26, 2016

Scheme of the experiment: pulses of light (waves) emit electrons (green) from a neon atom (violet). Image courtesy of Maurizio Contran, Department of Physics, Politecnico di Milano. For a larger version of this image please go here.

An international team has used the light produced by the Free Electron Laser FERMI at the research Centre Elettra Sincrotrone Trieste in the AREA Science Park to control the ultrafast movement of electrons. The experiment, published in the journal Nature Photonics, opens the way to the study of more complex processes which occur in nature on the scale of attoseconds (billionths of a billionth of a second), such as photosynthesis, combustion, catalysis and atmospheric chemistry.

Chemical, physical and biological processes are intrinsically dynamic, because they depend not only on the atomic and electronic structure of matter, but also on how they evolve in time. Ahmed Zewail won the Nobel prize (1999) for "femtochemistry": the observation and control of dynamic chemical processes using ultrafast laser pulses, of a few millionths of a billionth of a second (femtoseconds). This is the scale of time on which atoms make or break bonds in chemical or biological processes, such as photosynthesis or combustion.

Nature however can be still "faster". The atoms in a molecule move on the scale of femtoseconds, but the electrons, which are the basis of chemical bonds, are much faster and in the processes they cause, they move a thousand times faster, that is, tens or hundreds of attoseconds (a billionth of a billionth of a second).

"Like many in the scientific community", explains Kevin Prince, first author of the article just published, "we have also been working for years to develop innovative analytical methods with attosecond resolution to study and control fast dynamics. With this work, that exploits the exceptional properties of the laser light from FERMI, we can say we have finally achieved our goal."

The result was achieved by an international team of researchers from Italy (Elettra-Sincrotrone Trieste, the Politecnico of Milano, the IFN, IOM and ISM institutes of CNR and ENEA), Japan (Tohoku University), Russia (Lomonosov Moscow State University), USA (Drake University, Des Moines, Iowa) and Germany (Technical University of Berlin, University of Freiburg, European XFEL, Hamburg, Max Planck Institute for Nuclear Physics, Heidelberg).

They used a beam of light of two wavelengths (that is, two different colours) and managed to control the direction of emission of electrons ejected from an atom by the light. The experiment had a time resolution of 3 attoseconds, which now makes possible the study and control extremely fast processes.

"This result opens a new avenue to study and control ultrafast processes that involve electron motion on the time scale of attoseconds. We are dreaming about controlling more complex processes such as photocatalytic processes where the charge transfer plays a key role" said Kiyoshi Ueda, who with his group at Tohoku University, contributed to planning and conducting the experiment, and analysing the results.

This research have been published in the international journal Nature Photonics


Related Links
Tohoku University
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Researchers demonstrate 'quantum surrealism'
Toronto, Canada (SPX) Feb 25, 2016
New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch - the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fas ... read more

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

Aldrin recounts successes and challenges of historic space journey

Edgar Mitchell, astronaut who walked on Moon, dead at 85

Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

NASA Space Program Now Requires Russian Language

Tourists could soon benefit from direct flights to Baikonur Space Center

Virgin Galactic unveils new spaceship 16 months after deadly crash

NASA sees record number of astronaut applications

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

Send your computer code into space with astronaut Tim Peake

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Launcher and satellite preparations continue for Ariane 5's mission with EUTELSAT 65 West A

JAXA Launches X-ray Astronomy Satellite

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SES-9 Launch Targeting Late February

Longest-Lasting Stellar Eclipse Discovered

Astronomers take images of an exoplanet changing over time

First detection of super-earth atmosphere

Hubble Directly Measures Rotation of Cloudy 'Super-Jupiter'

New research introduces 'pause button' for boiling

Mystery of Dracula orchids' mimicry is unraveled with a 3-D printer

Shrinking 3-D technology for comfortable smart phone viewing

Modified laser cutter prints 3-D objects from powder

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.