. 24/7 Space News .
TIME AND SPACE
Confirmation of Wendelstein 7-X magnetic field
by Staff Writers
Princeton NJ (SPX) Dec 06, 2016


Experimental visualization of the field line on a magnetic surface. Image courtesy Nature Communications. For a larger version of this image please go here.

Physicist Sam Lazerson of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

The findings, published in the November 30 issue of Nature Communications, revealed an error field - or deviation from the designed configuration - of less than one part in 100,000. Such results could become a key step toward verifying the feasibility of stellarators as models for future fusion reactors.

W7-X, for which PPPL is the leading U.S. collaborator, is the largest and most sophisticated stellarator in the world. Built by the Max Planck Institute for Plasma Physics in Greifswald, it was completed in 2015 as the vanguard of the stellarator design. Other collaborators on the U.S. team include DOE's Oak Ridge and Los Alamos National Laboratories, along with Auburn University, the Massachusetts Institute of Technology, the University of Wisconsin-Madison and Xanthos Technologies.

Stellarators confine the hot, charged gas, otherwise known as plasma, that fuels fusion reactions in twisty - or 3D - magnetic fields, compared with the symmetrical - or 2D --fields that the more widely used tokamaks create. The twisty configuration enables stellarators to control the plasma with no need for the current that tokamaks must induce in the gas to complete the magnetic field. Stellarator plasmas thus run little risk of disrupting, as can happen in tokamaks, causing the internal current to abruptly halt and fusion reactions to shut down.

PPPL has played key roles in the W7-X project. The Laboratory designed and delivered five barn door-sized trim coils that fine-tune the stellarator's magnetic fields and made their measurement possible. "We've confirmed that the magnetic cage that we've built works as designed," said Lazerson, who led roughly half the experiments that validated the configuration of the field. "This reflects U.S. contributions to W7-X," he added, "and highlights PPPL's ability to conduct international collaborations." Support for this work comes from Euratom and the DOE Office of Science.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.

Results showed a remarkable fidelity to the design of the highly complex magnetic field. "To our knowledge," the authors write of the discrepancy of less than one part in 100,000, "this is an unprecedented accuracy, both in terms of the as-built engineering of a fusion device, as well as in the measurement of magnetic topology."

The W7-X is the most recent version of the stellarator concept, which Lyman Spitzer, a Princeton University astrophysicist and founder of PPPL, originated during the 1950s. Stellarators mostly gave way to tokamaks a decade later, since the doughnut-shaped facilities are simpler to design and build and generally confine plasma better. But recent advances in plasma theory and computational power have led to renewed interest in stellarators.

Such advances caused the authors to wonder if devices like the W7-X can provide an answer to the question of whether stellarators are the right concept for fusion energy. Years of plasma physics research will be needed to find out, they conclude, and "that task has just started."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
For the first time, scientists catch water molecules passing the proton baton
Seattle WA (SPX) Dec 02, 2016
Water conducts electricity, but the process by which this familiar fluid passes along positive charges has puzzled scientists for decades. But in a paper published in the journal Science, an international team of researchers has finally caught water in the act - showing how water molecules pass along excess charges and, in the process, conduct electricity. "This fundamental process in chem ... read more


TIME AND SPACE
Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

TIME AND SPACE
Russia to Launch Fewer Spacecraft in 2016 Than US, China for First Time

Soyuz-U Carrier Rocket Installed to Baikonur Launching Pad

Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

TIME AND SPACE
CaSSIS Sends First Images from Mars Orbit

First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

Opportunity team onsidering a new route due to boulder field

TIME AND SPACE
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

TIME AND SPACE
ESA looks at how to catch a space entrepreneur

Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

Two-year extensions confirmed for ESA's science missions

TIME AND SPACE
New technology of ultrahigh density optical storage researched at Kazan University

Earth's 'technosphere' now weighs 30 trillion tons

A watershed moment in understanding how H2O conducts electricity

Researchers take first look into the 'eye' of Majoranas

TIME AND SPACE
Biologists watch speciation in a laboratory flask

Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

Researchers propose low-mass supernova triggered formation of solar system

TIME AND SPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.