Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ENERGY TECH
Conductive electrodes are key to fast-charging batteries
by Staff Writers
Philadelphia PA (SPX) Jul 12, 2017


Drexel University researchers have developed two new electrode designs, using MXene material, that will allow batteries to charge much faster. The key is a microporous design that allows ions to quickly make their way to redox active sites. Image courtesy Drexel University.

Can you imagine fully charging your cell phone in just a few seconds? Researchers in Drexel University's College of Engineering can, and they took a big step toward making it a reality with their recent work unveiling of a new battery electrode design in the journal Nature Energy.

The team, led by Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel's College of Engineering, in the Department of Materials Science and Engineering, created the new electrode designs from a highly conductive, two-dimensional material called MXene. Their design could make energy storage devices like batteries, viewed as the plodding tanker truck of energy storage technology, just as fast as the speedy supercapacitors that are used to provide energy in a pinch - often as a battery back-up or to provide quick bursts of energy for things like camera flashes.

"This paper refutes the widely accepted dogma that chemical charge storage, used in batteries and pseudocapacitors, is always much slower than physical storage used in electrical double-layer capacitors, also known as supercapacitors," Gogotsi said. "We demonstrate charging of thin MXene electrodes in tens of milliseconds. This is enabled by very high electronic conductivity of MXene. This paves the way to development of ultrafast energy storage devices than can be charged and discharged within seconds, but store much more energy than conventional supercapacitors."

The key to faster charging energy storage devices is in the electrode design. Electrodes are essential components of batteries, through which energy is stored during charging and from which it is disbursed to power our devices. So the ideal design for these components would be one that allows them to be quickly charged and store more energy.

To store more energy, the materials should have places to put it. Electrode materials in batteries offer ports for charge to be stored. In electrochemistry, these ports, called "redox active sites" are the places that hold an electrical charge when each ion is delivered. So if the electrode material has more ports, it can store more energy - which equates to a battery with more "juice."

Collaborators Patrice Simon, PhD, and Zifeng Lin, from Universite Paul Sabatier in France, produced a hydrogel electrode design with more redox active sites, which allows it to store as much charge for its volume as a battery. This measure of capacity, termed "volumetric performance," is an important metric for judging the utility of any energy storage device.

To make those plentiful hydrogel electrode ports even more attractive to ion traffic, the Drexel-led team, including researchers Maria Lukatskaya, PhD, Sankalp Kota, a graduate student in Drexel's MAX/MXene Research Group led by Michel Barsoum, PhD, distinguished professor in the College of Engineering; and Mengquiang Zhao, PhD, designed electrode architectures with open macroporosity - many small openings - to make each redox active sites in the MXene material readily accessible to ions.

"In traditional batteries and supercapacitors, ions have a tortuous path toward charge storage ports, which not only slows down everything, but it also creates a situation where very few ions actually reach their destination at fast charging rates," said Lukatskaya, the first author on the paper, who conducted the research as part of the A.J. Drexel Nanomaterials Institute. "The ideal electrode architecture would be something like ions moving to the ports via multi-lane, high-speed 'highways,' instead of taking single-lane roads. Our macroporous electrode design achieves this goal, which allows for rapid charging - on the order of a few seconds or less."

The overarching benefit of using MXene as the material for the electrode design is its conductivity. Materials that allow for rapid flow of an electrical current, like aluminum and copper, are often used in electric cables. MXenes are conductive, just like metals, so not only do ions have a wide-open path to a number of storage ports, but they can also move very quickly to meet electrons there. Mikhael Levi, PhD, and Netanel Shpigel, research collaborators from Bar-Ilan University in Israel, helped the Drexel group maximize the number of the ports accessible to ions in MXene electrodes.

Use in battery electrodes is just the latest in a series of developments with the MXene material that was discovered by researchers in Drexel's Department of Materials Science and Engineering in 2011. Since then, researchers have been testing them in a variety of applications from energy storage to electromagnetic radiation shielding, and water filtering. This latest development is significant in particular because it addresses one of the primary problems hindering the expansion of the electric vehicle market and that has been lurking on the horizon for mobile devices.

"If we start using low-dimensional and electronically conducting materials as battery electrodes, we can make batteries working much, much faster than today," Gogotsi said. "Eventually, appreciation of this fact will lead us to car, laptop and cell-phone batteries capable of charging at much higher rates - seconds or minutes rather than hours."

Research paper

ENERGY TECH
First battery-free cellphone makes calls by harvesting ambient power
Seattle WA (SPX) Jul 10, 2017
University of Washington researchers have invented a cellphone that requires no batteries - a major leap forward in moving beyond chargers, cords and dying phones. Instead, the phone harvests the few microwatts of power it requires from either ambient radio signals or light. The team also made Skype calls using its battery-free phone, demonstrating that the prototype made of commercial, of ... read more

Related Links
A.J. Drexel Nanomaterials Institute
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Creating Trends in Space: An Interview with NanoRacks CEO Jeffrey Manber

Counting calories in space

Trump offers bold space goals but fills in few details

Liftoff for Trump's bold space plans may have to wait

ENERGY TECH
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

Aerojet Rocketdyne tests Advanced Electric Propulsion System

Russia to Carry Out Five Launches From Vostochny Space Center in 2018

Spiky ferrofluid thrusters can move satellites

ENERGY TECH
Curiosity Mars Rover Begins Study of Ridge Destination

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Mars surface 'more uninhabitable' than thought: study

ENERGY TECH
China develops sea launches to boost space commerce

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

ENERGY TECH
LISA Pathfinder: bake, rattle and roll

100M Pound boost for UK space sector

Iridium Poised to Make Global Maritime Distress and Safety System History

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

ENERGY TECH
Spacepath Communications Announces Innovative Frequency Converter Systems

WVU to develop software for future NASA Mars rovers, test 3-D printed foams on ISS

Giant enhancement of electromagnetic waves revealed within small dielectric particles

ANU invention may help to protect astronauts from radiation in space

ENERGY TECH
Evidence discovered for two distinct giant planet populations

Molecular Outflow Launched Beyond Disk Around Young Star

Hidden Stars May Make Planets Appear Smaller

More to Life Than the Habitable Zone

ENERGY TECH
NASA spacecraft to fly over Jupiter's Great Red Spot

Juno Completes Flyby over Jupiter's Great Red Spot

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement