. 24/7 Space News .
ICE WORLD
Coal mine dust lowers spectral reflectance of Arctic snow by up to 84 percent
by Staff Writers
Boulder CO (SPX) Feb 03, 2017


Collecting spectral reflectance measurements of surface snow with corresponding snow samples in Northern Svalbard. Image courtesy Alia Khan and University of Colorado Boulder.

Dust released by an active coal mine in Svalbard, Norway, reduced the spectral reflectance of nearby snow and ice by up to 84 percent, according to new University of Colorado Boulder-led research.

The study illustrates the significant, localized role that dark-colored particulates - which absorb more solar radiation than light-colored snow and keep more heat closer to the Earth's surface - can play in hastening Arctic ice melt.

The study was published in the Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

Unblemished snow and ice have a very high spectral albedo, a measurement used to indicate how effectively a given surface reflects solar energy. Over time, airborne black carbon particles (from soot or automobile emissions, for example) or other mineral dust can travel long distances in the atmosphere and settle on snow and glaciers, lowering the overall albedo.

To study the localized effects of coal dust on an area with high spectral reflectance, CU Boulder researchers focused on an active coal mine in Svalbard, Norway, located on a sparsely populated island north of the Arctic Circle. The researchers collected snow and ice samples from four sites at varying distances from the mine, with some samples being visibly dirtier than others.

The researchers then measured the light absorption capacity of each sample, adjusting for environmental factors such as snow grain size and location relative to the mine. Overall, the study concluded that coal dust had a strong but localized effect, reducing the albedo in the immediate area by up to 84 percent.

The findings may provide a foundation for similar research using satellites and remote sensing techniques in far-flung areas.

"The extreme contrast between snow and dust at this particular site gave us a baseline to develop algorithms that we can now use to take future measurements in areas that aren't easily accessible," said lead study author Alia Khan, a post-doctoral researcher in CU Boulder's National Snow and Ice Data Center and former graduate student at the Institute of Arctic and Alpine Research (INSTAAR).

The findings may also provide context for future policymaking decisions regarding the potential expansion of mining the coal-rich Arctic region, especially in light of ongoing permafrost thaw that may allow more land-based drilling operations.

"We hope these ground-based spectral measurements could be used in the management of future energy development in the Arctic, especially for mines that may be unavailable for ground-based observations, but may be large enough to be visible by satellite," said Khan.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Colorado at Boulder
Beyond the Ice Age






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Coal mine dust accelerates snow melt in the Arctic
Boulder, Colo. (UPI) Feb 1, 2017
According to a new study, dust expelled by a coal mine in Svalbard, Norway, encourages snow and ice melt in the Arctic. The spectral reflectance of nearby snow was reduced 84 percent by the presence of dust. Researchers measured the albedo, the reflecting power of a surface, of snow samples collected at four sites on the Arctic island. Each sample site was a different distance from the ... read more


ICE WORLD
Scientists and students tackle omics at NASA workshop

Mister Trump Goes to Washington

Airbus delivers propulsion test module for the Orion programme to NASA

NASA to rely on Soyuz for ISS missions until 2019

ICE WORLD
Major review completed for SLS Exploration Upper Stage

ULA and team launches US military spy satellite

Airbus Safran Launchers in 2016: we keep our promises

India Defers Much-Awaited Heaviest Rocket Launch

ICE WORLD
Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

Bursts of methane may have warmed early Mars

Long Eclipse Avoidance Manoeuvres Performed Successfully on MOM Spacecraft

ICE WORLD
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

ICE WORLD
ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

ICE WORLD
New white paper reviews latest support for Redefinition of the Kilogram by 2018

A new approach to 3-D holographic displays greatly improves the image quality

UCLA physicists map the atomic structure of an alloy

Facebook's Oculus ordered pay $500 mn in suit on stolen tech

ICE WORLD
First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

ICE WORLD
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.