. 24/7 Space News .
STELLAR CHEMISTRY
Close-up view of galaxies prompts re-think on star formation
by Staff Writers
Edinburgh, UK (SPX) Nov 13, 2015


File image.

Astronomers have identified for the first time one of the key components of many stars, a study suggests. A type of gas found in the voids between galaxies - known as atomic gas - appears to be part of the star formation process under certain conditions, researchers say.

The findings overturn a long-standing theory about the conditions needed for star formation to take place - a process that happens when dense clouds of dust and gas inside galaxies collapse. It was previously thought that stars could form only in the presence of a different type of gas - called molecular gas.

Atomic gas is composed of individual hydrogen atoms. It is usually found in regions of space that do not contain any planets or stars and are largely empty, researchers say. Molecular gas is made up of pairs of hydrogen atoms bound together, and is present in the densest parts of galaxies, where most planets and stars form.

The new study, led by the University of Edinburgh, provides the first evidence that atomic gas can fuel star formation. This happens when atomic gas flows into galaxies but does not have time to convert to the molecular form, the team says.

The discovery was made by studying galaxies in which explosions of massive stars - known as gamma-ray bursts - have been observed. It was thought the stars formed from molecular gas, but recent studies have shown these galaxies to be almost entirely deficient in molecular gas.

Using a radio telescope in New South Wales, Australia, researchers measured the levels of atomic gas present in the galaxies. The team found they contain large amounts of atomic gas, distributed close to gamma-ray bursts, suggesting it can act as the fuel for star formation.

Stars form in the same way regardless of the type of gas involved, scientists say. Gas molecules are destroyed early in the process, so the stars they produce are the same, they add.

The study, published in the journal Astronomy and Astrophysics, was funded by the Science and Technology Facilities Council. The research was carried out in collaboration with researchers at institutions across Europe, the US and Australia.

Dr Michal Michalowski, of the University of Edinburgh's School of Physics and Astronomy, who led the study, said: "We were analysing the atomic gas data for these galaxies when the results about their molecular gas deficiency were announced. We pieced together all the information, and found that stars may in fact form out of atomic gas, which was previously believed to be impossible."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Edinburgh
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Clues to the formation of magnetic fields around stars and galaxies
Princeton NJ (SPX) Nov 10, 2015
An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances. In a paper published in October in Physical Review Letters, the scientists ... read more


STELLAR CHEMISTRY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

STELLAR CHEMISTRY
Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

STELLAR CHEMISTRY
Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

STELLAR CHEMISTRY
New rocket readies for liftoff in 2016

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

STELLAR CHEMISTRY
Cygnus Starts Final Round of Processing for Station Cargo Delivery

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

STELLAR CHEMISTRY
LISA Pathfinder topped off for Vega launch that will test Relativity

Ariane 5 lofts dual birds

Rocket launch from Hawaii carrying UH payload experiences anomaly

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

STELLAR CHEMISTRY
New Results from GPI Exoplanet Survey

Newfound Earth-size exoplanet may be an important milestone in search for alien life

UCLA professor proposes simpler way to define what makes a planet

Distant world's weather is mixed bag of hot dust and molten rain

STELLAR CHEMISTRY
Electron microscopy method sculpts 3-D structures at atomic level

BU Satellite Team Gets Big Boost from NASA

System helps novices design 3-D-printable robotic creatures

Queen's University professor to unveil self-levitating displays









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.