Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CLIMATE SCIENCE
Climate instability over the past 720,000 years
by Staff Writers
Tokyo, Japan (SPX) May 04, 2017


Relationship between the frequency of climate fluctuations with temperatures in the Antarctic during the past 720,000 years obtained from analysis of Antarctic ice cores (black spots), as well as results for the final glacial period based on ice cores from Greenland (red squares). During the warm interglacial periods, and the coldest portion of a glacial period, the frequency of climate fluctuations was low, but during periods of intermediate temperatures within a glacial period, climate fluctuations occurred frequently and the climate was unstable. Credit: Dome Fuji Ice Core Project - see full size chart here

A research group formed by 64 researchers from the National Institute of Polar Research, the University of Tokyo, and other organizations analyzed atmospheric temperatures and dust for the past 720,000 years using an ice core obtained at Dome Fuji in Antarctica.

Results indicate that when intermediate temperatures occurred within a glacial period, the climate was highly unstable and fluctuated. A climate simulation was also performed based on the Coupled Atmosphere-Ocean General Circulation Model, which revealed that the major cause of the observed climate instability was global cooling by a decline in the greenhouse effect.

Climate instability severely impacts both the Earth's natural environment and human society. In the continued effort for understanding how global warming could affect climate instability, it is important to identify periods in the past that experienced climate instability.

These periods need to be studied and modeled to clarify any potential causes of the observed instability. However, little progress has been made in improving our documenting and understanding of climate instability prior to the last glacial period.

The research groups of Dr. Kenji Kawamura and Dr. Hideaki Motoyama (National Institute of Polar Research) analyzed the Second Dome Fuji ice core that were obtained as part of the Japanese Antarctic Research Expedition (JARE) between 2003 and 2007. Their team reproduced fluctuations in the air temperature and dust (solid particulate matter carried by the atmosphere) in the Antarctic for the past 720,000 years.

They combined this with data from the Dome C ice core drilled by a European team to obtain highly robust paleoclimate data. They examined these data, discovering that for the past 720,000 years, the intermediate climate within glacial periods was marked by frequent climate fluctuations.

This raised a question: Why does the most instability occur when there is an intermediate climate during a glacial period, rather than during an interglacial period, such as we are currently experiencing, or during the coldest part of a glacial period?

The research group of Dr. Ayako Abe-Ouchi (University of Tokyo) used a climate model (MIROC) to first reproduce three types of background climate conditions--the interglacial period, intermediate climate within a glacial period, and the coldest part of a glacial period. They then performed a simulation that added the same quantity of fresh water to the northern part of the North Atlantic Ocean in each of the three climate conditions.

This simulation was performed using the Earth Simulator supercomputer at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The simulation results indicated that the response to freshwater inflow is maximized during the intermediate climate that occurs within glacial periods, causing the climate to become unstable (Fig. 3 A-C).

An important factor affecting climate instability is the vulnerability of Atlantic deep water circulation during global cooling resulting from a decrease in the atmospheric carbon dioxide concentration (Fig.

3 D-E). Until now, the primary factor for climatic instability was thought to be the existence and instability of continental ice sheets in the Northern Hemisphere, but this experiment has revealed that carbon dioxide is another important factor, determining not only the average state of the climate, but also the long-term stability of the climate.

These results also suggest that future stability in the present interglacial period, which has continued for more than 10,000 years, is not guaranteed. Indeed, if significant melting of the Greenland ice sheet occurs due to anthropogenic warming, it might destabilize the climate.

According to Dr. Kawamura, "Due to anthropogenic emissions, the atmospheric greenhouse gas concentrations have reached a level not seen over the past million years. Large climate components, such as ice sheets and the oceans that have vast size and longtime scales for variations, will undoubtedly change.

"It will become even more important to combine the climate reconstructions and numerical simulations for the periods when the global environment was much different than it is today, to understand the Earth system by verifying its mechanisms."

Research paper

CLIMATE SCIENCE
Mechanism of the influence of the Tibetan-Iranian Plateaus on the circulation and climate in summer
Beijing, China (SPX) May 03, 2017
The highest and largest plateau in the Northern Hemisphere, the Tibetan Plateau (TP), is in the subtropical region of Asia. The air quality above the TP is only 60% of the sea level. In addition, because the radiation over the plateau, especially in the boundary layer is significantly different from those in the low altitude region, the thermal process over the TP has obvious particularity. ... read more

Related Links
Research Organization of Information and Systems
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
AGU journal commentaries highlight importance of Earth and space science research

NASA spacesuits over budget, tight on timeline: audit

'Better you than me,' Trump tells record-breaking astronaut

Lunar, Martian Greenhouses Designed to Mimic Those on Earth

CLIMATE SCIENCE
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

CLIMATE SCIENCE
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

CLIMATE SCIENCE
China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

CLIMATE SCIENCE
ViaSat-2 Satellite to Launch on June 1

ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

CLIMATE SCIENCE
Penn researchers quantify the changes that lightning inspires in rock

Russian scientists create new system of concrete building structures

New organic lasers one step closer to reality

First luminescent molecular system with a lower critical solution temperature

CLIMATE SCIENCE
Research Center A Hub For Origins of Life Studies

ISS investigation aims to identify unknown microbes in space

'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

CLIMATE SCIENCE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement