Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















ENERGY TECH
Clarifying the role of magnetism in high-temperature superconductors
by Staff Writers
Tokyo, Japan (SPX) Jan 29, 2016


The sample was gently squeezed in a copper holder to insure a uniform alignment at low temperature.

A collaboration of scientists from the RIKEN SPring-8 Center, Osaka University, the Japan Atomic Energy Agency, and the Japan Synchrotron Radiation Research Institute have published research clarifying the role of magnetism in a new type of high-temperature superconductor.

The research, just published as a Rapid Communication in Physical Review B, gives us a better understanding of the atomic-scale behavior of these materials. Physicists hope that, by understanding how these materials superconduct at relatively high temperature, they can eventually learn enough to make materials that superconduct close to room temperature.

It is known that the phenomenon of superconductivity - where materials conduct electricity without resistance - arises when pairs of electrons become coupled together or "paired". With traditional superconductors, this pairing arises due to vibrations of the ions in the structure. But this is not always the case: there are other types of materials, such as cuprate superconductors and a relatively new class of superconductor iron-pnictide superconductors, that was discovered by a group led by Hideo Hosono at the Tokyo Institute of Technology, where magnetism may be the paring mechanism.

According to Alfred Baron, the leader of the Materials Dynamics Lab at RIKEN SPring-8 Center, "The question we addressed was how the atomic vibrations in the iron pnictides are affected by magnetism.

This was especially interesting because atomic vibrations are understood to be driving force of the older type of low-temperature superconductors, while magnetism is considered to be the probable driving mechanism of the new, high-temperature, superconductivity. Thus, it was in some sense, an overlap of the old with the new."

Using a technique called inelastic x-ray scattering on two beamlines of the powerful SPring-8 synchrotron facility in Harima, Japan, the group was able to measure the dynamics in specially prepared single-domain samples. Comparing their measurements to calculations then suggested that magnetic fluctuations play an important role in the atomic vibrations. Naoki Murai, the graduate student spearheading the measurement explains,

"By very gently pressing the material in the correct direction we were able to observe effects due to the onset of magnetic order". Says Baron, "One of the nice things about this work is that it provides a basis for describing atomic vibrations in this whole class of materials--do calculations with magnetism and then add fluctuations".

Baron says the collaboration will continue to investigate the properties of these fascinating materials, and also, more generally, the interaction of magnetism and atomic vibrations.

.


Related Links
RIKEN
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Creation of Jupiter interior, a step towards room temp superconductivity
Osaka, Japan (SPX) Dec 21, 2015
Hydrogen is the most abundant element in the universe, and a major component of stars such as the Sun, as well as gas-giant planets such as Jupiter and Saturn. In recent years, hydrogen's behavior at high temperature and high pressure has been in the realm of interest not only for planetary science, but also for fields such as materials science for the purpose of achieving a hydrogen energy soci ... read more


ENERGY TECH
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

ENERGY TECH
Opportunity Abrasion Tool Conducts Two Rock Grinds

Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

ENERGY TECH
Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

Russian Space Agency discussing possible training of Iranian astronaut

ENERGY TECH
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

ENERGY TECH
Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

ENERGY TECH
Ariane 5 is readied for an Arianespace leading customer Intelsat

Roscosmos Approves Delay of Eutelsat 9B Launch Due to Bad Weather

Assembly begins on 2nd Ariane 5 launcher for 2016

EpicNG satellite installed on Ariane 5 for launch

ENERGY TECH
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

ENERGY TECH
Acoustic tweezers provide much needed pluck for 3-D bioprinting

Designing a pop-up future

Chanel swaps bling for eco-inspired haute couture

Material may offer cheaper alternative to smart windows




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.