. 24/7 Space News .
CHIP TECH
Chip could make voice control ubiquitous in electronics
by Staff Writers
Boston MA (SPX) Feb 14, 2017


Researchers at MIT's Microsystems Technology Laboratories have built a low-power chip specialized for automatic speech recognition. With power savings of 90 to 99 percent, it could make voice control practical for relatively simple electronic devices. Image courtesy Jose-Luis Olivares/MIT.

The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people's chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.

In a real-world application, that probably translates to a power savings of 90 to 99 percent, which could make voice control practical for relatively simple electronic devices. That includes power-constrained devices that have to harvest energy from their environments or go months between battery charges. Such devices form the technological backbone of what's called the "internet of things," or IoT, which refers to the idea that vehicles, appliances, civil-engineering structures, manufacturing equipment, and even livestock will soon have sensors that report information directly to networked servers, aiding with maintenance and the coordination of tasks.

"Speech input will become a natural interface for many wearable applications and intelligent devices," says Anantha Chandrakasan, the Vannevar Bush Professor of Electrical Engineering and Computer Science at MIT, whose group developed the new chip. "The miniaturization of these devices will require a different interface than touch or keyboard. It will be critical to embed the speech functionality locally to save system energy consumption compared to performing this operation in the cloud."

"I don't think that we really developed this technology for a particular application," adds Michael Price, who led the design of the chip as an MIT graduate student in electrical engineering and computer science and now works for chipmaker Analog Devices. "We have tried to put the infrastructure in place to provide better trade-offs to a system designer than they would have had with previous technology, whether it was software or hardware acceleration."

Price, Chandrakasan, and Jim Glass, a senior research scientist at MIT's Computer Science and Artificial Intelligence Laboratory, described the new chip in a paper Price presented last week at the International Solid-State Circuits Conference.

The sleeper wakes
Today, the best-performing speech recognizers are, like many other state-of-the-art artificial-intelligence systems, based on neural networks, virtual networks of simple information processors roughly modeled on the human brain. Much of the new chip's circuitry is concerned with implementing speech-recognition networks as efficiently as possible.

But even the most power-efficient speech recognition system would quickly drain a device's battery if it ran without interruption. So the chip also includes a simpler "voice activity detection" circuit that monitors ambient noise to determine whether it might be speech. If the answer is yes, the chip fires up the larger, more complex speech-recognition circuit.

In fact, for experimental purposes, the researchers' chip had three different voice-activity-detection circuits, with different degrees of complexity and, consequently, different power demands. Which circuit is most power efficient depends on context, but in tests simulating a wide range of conditions, the most complex of the three circuits led to the greatest power savings for the system as a whole. Even though it consumed almost three times as much power as the simplest circuit, it generated far fewer false positives; the simpler circuits often chewed through their energy savings by spuriously activating the rest of the chip.

A typical neural network consists of thousands of processing "nodes" capable of only simple computations but densely connected to each other. In the type of network commonly used for voice recognition, the nodes are arranged into layers. Voice data are fed into the bottom layer of the network, whose nodes process and pass them to the nodes of the next layer, whose nodes process and pass them to the next layer, and so on. The output of the top layer indicates the probability that the voice data represents a particular speech sound.

A voice-recognition network is too big to fit in a chip's onboard memory, which is a problem because going off-chip for data is much more energy intensive than retrieving it from local stores. So the MIT researchers' design concentrates on minimizing the amount of data that the chip has to retrieve from off-chip memory.

Bandwidth management
A node in the middle of a neural network might receive data from a dozen other nodes and transmit data to another dozen. Each of those two dozen connections has an associated "weight," a number that indicates how prominently data sent across it should factor into the receiving node's computations. The first step in minimizing the new chip's memory bandwidth is to compress the weights associated with each node. The data are decompressed only after they're brought on-chip.

The chip also exploits the fact that, with speech recognition, wave upon wave of data must pass through the network. The incoming audio signal is split up into 10-millisecond increments, each of which must be evaluated separately. The MIT researchers' chip brings in a single node of the neural network at a time, but it passes the data from 32 consecutive 10-millisecond increments through it.

If a node has a dozen outputs, then the 32 passes result in 384 output values, which the chip stores locally. Each of those must be coupled with 11 other values when fed to the next layer of nodes, and so on. So the chip ends up requiring a sizable onboard memory circuit for its intermediate computations. But it fetches only one compressed node from off-chip memory at a time, keeping its power requirements low.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Mail armor inspires physicists
Karlsruher, Germany (SPX) Feb 10, 2017
The Middle Ages certainly were far from being science-friendly: Whoever looked for new findings off the beaten track faced the threat of being burned at the stake. Hence, the contribution of this era to technical progress is deemed to be rather small. Scientists of Karlsruhe Institute of Technology (KIT), however, were inspired by medieval mail armor when producing a new metamaterial with novel ... read more


CHIP TECH
Art and space enter a new dimension

Reaching for the Stars: An Interview with former NASA Astronaut Mike Fossum

Air Force doctor solves NASA's poop problem

Russia launches Progress MS-05 cargo mission to ISS

CHIP TECH
SpaceX blasts off cargo from historic NASA launchpad

The Unique Triumph of PSLV-C37

SpaceX aborts launch after 'odd' rocket engine behavior

Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

CHIP TECH
Researchers pinpoint watery past on Mars

Opportunity leaving crater rim for the Plains of Meridiani

Scientists say Mars valley was flooded with water not long ago

Opportunity passes 44 kilometers of surface travel after 13 years

CHIP TECH
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

CHIP TECH
Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

CHIP TECH
Scientists predicted new high-energy compounds

ESA's six-legged Suntracker flying on a Dragon

Sky and Space signs agreement with US Department of Defence

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

CHIP TECH
Hunting for runaway worlds

Ancient microbes push limits of what life can survive on Earth, and off

Prediction: More gas-giants will be found orbiting Sun-like stars

NASA to host news conference on discovery beyond our solar system

CHIP TECH
Europa Flyby Mission Moves into Design Phase

Juno to remain in current orbit at Jupiter

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.