Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Characterizing the forces that hold everything together
by Staff Writers
Amherst MA (SPX) Sep 24, 2015


UMass Amherst physicists, with others, provide a new software tool and database to help materials designers with the difficult calculations needed to predict the magnitude of van der Waals interactions between anisotropic or directionally dependent bodies such as those illustrated, with long-range torques. Though small, these forces are dominant on the nanoscale. Image courtesy UMass Amherst. For a larger version of this image please go here.

As electronic, medical and molecular-level biological devices grow smaller and smaller, approaching the nanometer scale, the chemical engineers and materials scientists devising them often struggle to predict the magnitude of molecular interactions on that scale and whether new combinations of materials will assemble and function as designed.

This is because the physics of interactions at these scales is difficult, say physicists at the University of Massachusetts Amherst, who with colleagues elsewhere this week unveil a project known as Gecko Hamaker, a new computational and modeling software tool plus an open science database to aid those who design nano-scale materials.

In the cover story in this week's issue of Langmuir, Adrian Parsegian, Gluckstern Chair in physics, physics doctoral student Jaime Hopkins and adjunct professor Rudolf Podgornik on the UMass Amherst team report calculations of van der Waals interactions between DNA, carbon nanotubes, proteins and various inorganic materials, with colleagues at Case Western Reserve University and the University of Missouri who make up the Gecko-Hamaker project team.

To oversimplify, van der Waals forces are the intermolecular attractions between atoms, molecules, surfaces, that control interactions at the molecular level. The Gecko Hamaker project makes available to its online users a large variety of calculations for nanometer-level interactions that help to predict molecular organization and evaluate whether new combinations of materials will actually stick together and work.

In this work supported by the U.S. Department of Energy, Parsegian and colleagues say their open-science software opens a whole range of insights into nano-scale interactions that materials scientists haven't been able to access before.

Parsegian explains, "Van der Waals forces are small, but dominant on the nanoscale. We have created a bridge between deep physics and the world of new materials. All miniaturization, all micro- and nano-designs are governed by these forces and interactions, as is behavior of biological macromolecules such as proteins and lipid membranes. These relationships define the stability of materials."

He adds, "People can try putting all kinds of new materials together. This new database and our calculations are going to be important to many different kinds of scientists interested in colloids, biomolecular engineering, those assembling molecular aggregates and working with virus-like nanoparticles, and to people working with membrane stability and stacking. It will be helpful in a broad range of other applications."

Podgornik adds, "They need to know whether different molecules will stick together or not. It's a complicated problem, so they try various tricks and different approaches." One important contribution of Gecko Hamaker is that it includes experimental observations seemingly unrelated to the problem of interactions that help to evaluate the magnitude of van der Waals forces.

Podgornik explains, "Our work is fundamentally different from other approaches, as we don't talk only about forces but also about torques. Our methodology allows us to address orientation, which is more difficult than simply describing van der Waals forces, because you have to add a lot more details to the calculations. It takes much more effort on the fundamental level to add in the orientational degrees of freedom."

He points out that their methods also allow Gecko Hamaker to address non-isotropic, or non-spherical and other complex molecular shapes. "Many molecules don't look like spheres, they look like rods. Certainly in that case, knowing only the forces isn't enough. You must calculate how torque works on orientation. We bring the deeper theory and microscopic understanding to the problem. Van der Waals interactions are known in simple cases, but we've taken on the most difficult ones."

Hopkins, the doctoral student, notes that as an open-science product, Gecko Hamaker's calculations and data are transparent to users, and user feedback improves its quality and ease of use, while also verifying the reproducibility of the science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
UCLA physicists determine 3-D positions of individual atoms for the first time
Los Angeles CA (SPX) Sep 22, 2015
Atoms are the building blocks of all matter on Earth, and the patterns in which they are arranged dictate how strong, conductive or flexible a material will be. Now, scientists at UCLA have used a powerful microscope to image the three-dimensional positions of individual atoms to a precision of 19 trillionths of a meter, which is several times smaller than a hydrogen atom. Their observatio ... read more


TIME AND SPACE
NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

TIME AND SPACE
Supervising two rovers from space

Team Continues to Operate Rover in RAM Mode

Ridley Scott's 'The Martian' takes off in Toronto

Mars Panorama from Curiosity Shows Petrified Sand Dunes

TIME AND SPACE
Making a difference with open source science equipment

NASA, Harmonic Launch First Non-Commercial UHD Channel in NAmerica

Russian cosmonaut back after record 879 days in space

New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

TIME AND SPACE
Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

TIME AND SPACE
US astronaut misses fresh air halfway through year-long mission

Andreas Mogensen lands after a busy mission on Space Station

ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Slam dunk for Andreas in space controlling rover on ground

TIME AND SPACE
Russia successfully launches satellite with Proton rocket

SpaceX Signs New Commercial Launch Contracts

ILS announces one ILS Proton launch for HISPASAT in 2017

First Ever Launch Vehicle to Be Sent to Russia's New Spaceport in Siberia

TIME AND SPACE
Watching an exoplanet in motion around a distant star

Europlanet 2020 launches new era of planetary collaboration in Europe

Nearby Red Dwarfs Could Reveal Planet Secrets

Astronomers peer into the 'amniotic sac' of a planet-hosting star

TIME AND SPACE
Physicists defy conventional wisdom to identify ferroelectric material

Engineers unlock remarkable 3-D vision from ordinary digital camera technology

Making 3-D objects disappear

De Beers says 'challenging' time for diamonds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.