Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
Direct Measurement of Distant Black Hole's Spin
by Staff Writers
Washington DC (SPX) Mar 09, 2014


Multiple images of a distant quasar are visible in this combined view from NASA's Chandra X-ray Observatory and the Hubble Space Telescope. Image courtesy: X-ray: NASA/CXC/Univ of Michigan/R.C.Reis et al; Optical: NASA/STScI.

Astronomers have used NASA's Chandra X-ray Observatory and the European Space Agency's (ESA's) XMM-Newton to show a supermassive black hole six billion light years from Earth is spinning extremely rapidly. This first direct measurement of the spin of such a distant black hole is an important advance for understanding how black holes grow over time.

Black holes are defined by just two simple characteristics: mass and spin. While astronomers have long been able to measure black hole masses very effectively, determining their spins has been much more difficult.

In the past decade, astronomers have devised ways of estimating spins for black holes at distances greater than several billion light-years away, meaning we see the region around black holes as they were billions of years ago. However, determining the spins of these remote black holes involves several steps that rely on one another.

"We want to be able to cut out the middle man, so to speak, of determining the spins of black holes across the universe," said Rubens Reis of the University of Michigan in Ann Arbor, who led a paper describing this result that was published online Wednesday in the journal Nature.

Reis and his colleagues determined the spin of the supermassive black hole that is pulling in surrounding gas, producing an extremely luminous quasar known as RX J1131-1231 (RX J1131 for short). Because of fortuitous alignment, the distortion of space-time by the gravitational field of a giant elliptical galaxy along the line of sight to the quasar acts as a gravitational lens that magnifies the light from the quasar.

Gravitational lensing, first predicted by Einstein, offers a rare opportunity to study the innermost region in distant quasars by acting as a natural telescope and magnifying the light from these sources.

"Because of this gravitational lens, we were able to get very detailed information on the X-ray spectrum - that is, the amount of X-rays seen at different energies - from RX J1131," said co-author Mark Reynolds also of Michigan. "This in turn allowed us to get a very accurate value for how fast the black hole is spinning."

The X-rays are produced when a swirling accretion disk of gas and dust that surrounds the black hole creates a multimillion-degree cloud, or corona near the black hole. X-rays from this corona reflect off the inner edge of the accretion disk. The strong gravitational forces near the black hole alter the reflected X-ray spectrum. The larger the change in the spectrum, the closer the inner edge of the disk must be to the black hole.

"We estimate that the X-rays are coming from a region in the disk located only about three times the radius of the event horizon, the point of no return for infalling matter," said Jon M. Miller of Michigan, another author on the paper. "The black hole must be spinning extremely rapidly to allow a disk to survive at such a small radius."

For example, a spinning black hole drags space around with it and allows matter to orbit closer to the black hole than is possible for a non-spinning black hole.

By measuring the spin of distant black holes researchers discover important clues about how these objects grow over time. If black holes grow mainly from collisions and mergers between galaxies, they should accumulate material in a stable disk, and the steady supply of new material from the disk should lead to rapidly spinning black holes.

In contrast, if black holes grow through many small accretion episodes, they will accumulate material from random directions. Like a merry go round that is pushed both backwards and forwards, this would make the black hole spin more slowly.

The discovery that the black hole in RX J1131 is spinning at over half the speed of light suggests this black hole, observed at a distance of six billion light years, corresponding to an age about 7.7 billion years after the Big Bang, has grown via mergers, rather than pulling material in from different directions.

The ability to measure black hole spin over a large range of cosmic time should make it possible to directly study whether the black hole evolves at about the same rate as its host galaxy. The measurement of the spin of the RX J1131-1231 black hole is a major step along that path and demonstrates a technique for assembling a sample of distant supermassive black holes with current X-ray observatories.

Prior to the announcement of this work, the most distant black holes with direct spin estimates were located 2.5 billion and 4.7 billion light-years away.

.


Related Links
Chandra X-Ray Observatory
Chandra at the Smithsonian
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
New fast and furious black hole found
Perth, Australia (SPX) Mar 06, 2014
A team of Australian and American astronomers have been studying nearby galaxy M83 and have found a new superpowered small black hole, named MQ1, the first object of its kind to be studied in this much detail. Astronomers have found a few compact objects that are as powerful as MQ1, but have not been able to work out the size of the black hole contained within them until now. The tea ... read more


TIME AND SPACE
Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

China Focus: Uneasy rest begins for China's troubled Yutu rover

Is Yutu Stuck?

TIME AND SPACE
Robotic Arm Crushes Rock for Study

Relay Radio on Mars-Bound NASA Craft Passes Checkout

Mars Rover Oppportunity Crushing Rocks With Wheels

NASA's Curiosity Mars Rover Views Striated Ground

TIME AND SPACE
Committee Democrats Emphasize Need for Human Space Exploration Roadmap

NASA Commercial Crew Partners Complete Space System Milestones

Bright pulses of light could make space veggies more nutritious

Last Shuttle Commander Virtually Flies Boeing CST-100 to ISS

TIME AND SPACE
China expects to launch cargo ship into space around 2016

China capable of exploring Mars

Feature: The "masters" behind China's lunar rover Jade Rabbit

Preparation for Chang'e-5 launch on schedule

TIME AND SPACE
NASA says US-Russia space ties 'normal'

Cancer Targeted Treatments from Space Station Discoveries

Cosmonauts on space station to turn teacher for Russian students

Space suit leak happened before, NASA admits

TIME AND SPACE
Payload prep continues for Arianespace Soyuz for Sentinel-1A

Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

TIME AND SPACE
What Would A Rocky Exoplanet Look Like? Atmosphere Models Seek Clues

'Dimer molecules' aid study of exoplanet pressure, hunt for life

Super-Earth' may be dead worlds

Kepler Mission Announces a Planet Bonanza, 715 New Worlds

TIME AND SPACE
Ecliptic RocketCam Captures Sirius Antenna Deployment In Geo Orbit

Ultra-fast laser spectroscopy lights way to understanding new materials

Aerojet Rocketdyne Provides Propulsion For GPM Satellite

Waterloo physicists solve 20-year-old debate surrounding glassy surfaces




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.