. 24/7 Space News .
Chandra Independently Determines Hubble Constant

The astronomers in this study used a phenomenon known as the Sunyaev-Zeldovich effect, where photons in the cosmic microwave background interact with electrons in the hot gas that pervades the enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. This illustration depicts this concept graphically by the broad bright beams emanating from the cluster. (Illustration: NASA/CXC/M.Weiss)
by Staff Writers
Cambridge MA (SPX) Aug 09, 2006
A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe.

"The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations."

The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances.

The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance.

By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion light years from Earth. These results do not rely on the traditional distance ladder. Bonamente and his colleagues find the Hubble constant to be 77 kilometers per second per megaparsec (a megaparsec is equal to 3.26 million light years), with an uncertainty of about 15%.

This result agrees with the values determined using other techniques. The Hubble constant had previously been found to be 72, give or take 8, kilometers per second per kiloparsec based on Hubble Space Telescope observations. The new Chandra result is important because it offers the independent confirmation that scientists have been seeking and fixes the age of the Universe between 12 and 14 billion years.

"These new results are entirely independent of all previous methods of measuring the Hubble constant," said team member Marshall Joy also of MSFC.

The astronomers used a phenomenon known as the Sunyaev-Zeldovich effect, where photons in the cosmic microwave background (CMB) interact with electrons in the hot gas that pervades the enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. The magnitude of this distortion depends on the density and temperature of the hot electrons and the physical size of the cluster. Using radio telescopes to measure the distortion of the microwave background and Chandra to measure the properties of the hot gas, the physical size of the cluster can be determined. From this physical size and a simple measurement of the angle subtended by the cluster, the rules of geometry can be used to derive its distance. The Hubble constant is determined by dividing previously measured cluster speeds by these newly derived distances.

This project was championed by Chandra's telescope mirror designer, Leon Van Speybroeck, who passed away in 2002. The foundation was laid when team members John Carlstrom (University of Chicago) and Marshall Joy obtained careful radio measurements of the distortions in the CMB radiation using radio telescopes at the Berkeley-Illinois-Maryland Array and the Caltech Owens Valley Radio Observatory. In order to measure the precise X-ray properties of the gas in these distant clusters, a space-based X-ray telescope with the resolution and sensitivity of Chandra was required.

"It was one of Leon's goals to see this project happen, and it makes me very proud to see this come to fruition," said Chandra Project Scientist Martin Weisskopf of MSFC.

The results are described in a paper appearing in the August 10th issue of The Astrophysical Journal. MSFC manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass.

Related Links
Chandra at Harvard



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NASA Conducts Census Of Nearby Hidden Black Holes
Greenbelt MD (SPX) Aug 02, 2006
NASA scientists on a quest to find hidden black holes in the local universe have found surprisingly few, the agency announced Wednesday. The observation implies that if these hidden black holes exist - and most scientists are convinced they do - they must be from the more distant, earlier universe, a concept that has interesting implications for galaxy evolution.







  • Space Missions Become More Challenging
  • RSC Energia Outline A Concept Of Russian Manned Space Navigation Development
  • Griffin Asks For Patience In Pursuit Of Deep Space Goals
  • Man Of Many Hats Not Ready To Hang Any Up

  • Russia To Stage Mock Mission To Mars
  • Arctic Mars Analog Svalbard Expedition
  • Spirit Puts Finishing Touches on Winter Panorama
  • The Hydrogen Peroxide Snows Of Mars

  • Russia To Launch European Weather Probe In October
  • ATK Receives $90M To Supply Motors For Missile Defense And Satellite Launch Vehicles
  • Second Ariane 5 ECA Launch Campaign Is Underway At The Spaceport
  • JSAT-10 Now Fueled And Ready For Launch

  • MODIS Images Western Wildfires
  • CloudSat Captures Hurricane Daniel's Transformation
  • Senators Collins And Lieberman Write To Griffin Over NASA Dumping 'Mission To Earth'
  • Google Earth Impacts Science

  • Nine Years To The Ninth Planet And Counting
  • IAU Approves Names For Two Small Plutonian Moons
  • Three Trojan Asteroids Share Neptune Orbit
  • New Horizons Crosses The Asteroid Belt

  • GLAST Burst Monitor One Step Closer To Tracking Most Powerful Explosions In Universe
  • A Cosmic Rain Lasting 30000 Years
  • Seeing Ourselves In Comets
  • NASA Funds Dark Energy Space Telescope Development

  • SMART-1 Towards Final Impact
  • Linking The Earth To The Moon
  • Japan Plans Moon Base By 2030
  • NASA Chooses LM For LRO Launch Services

  • Lockheed Martin Completes Fifth Modernized GPS Satellite
  • Raytheon Completes Demonstration of Space-Based Navigation System in India
  • SENS Simplex Service Extends to Mexico
  • Cracking The Secret Codes Of The European Galileo Satellite Network

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement