. 24/7 Space News .
CLONE AGE
Can stem cell technology be harnessed to generate biological pacemakers?
by Staff Writers
London, UK (SPX) Nov 26, 2015


This graphic shows examples of individual pacemaker cells. Image courtesy of Vasanth Vedantham. For a larger version of this image please go here.

Although today's pacemakers are lifesaving electronic devices, they are limited by their artificial nature. For example, their parts can fail or they can become infected. In addition, the devices require regular maintenance, must be replaced periodically, and can only approximate the natural regulation of a heartbeat.

A Review article published on November 20 in Trends in Molecular Medicine highlights the promise and limitations of new methods based on stem cell and reprogramming technologies to generate biological pacemakers that might one day replace electronic pacemakers.

"Theoretically, biological pacemakers, which are composed of electrically active cells that can functionally integrate with the heart, could provide natural heart rhythm regulation without the need for indwelling hardware," says author Vasanth Vedantham, of the University of California, San Francisco.

To create biological pacemakers, one approach is to coax stem cells to become specialized cardiac pacemaker cells that are normally found within the sinoatrial node of the heart. These are then transplanted into an ailing heart to restore pacemaking function.

Another promising approach is to directly reprogram supporting cells, already present in the heart--for instance, fibroblasts (e.g., connective tissue)--and convert them into pacemaker cells to restore cardiac function.

Vedantham states that initial large animal studies on biological pacemakers have generated promising results but that much more work remains ahead before biological pacing can be actually considered a clinically viable therapy.

For example, researchers need to better understand the mechanisms controlling the development and maintenance of pacemaker cells in the sinoatrial node, just as they must develop ways to compare experimental biological pacemaker tissue with bona fide sinoatrial node tissue.

Also, scientists will need to improve the methods used to deliver cells to desired locations within the heart, as well as the recovery of specific individual cells for detailed characterization and functional analyses.

"Biological pacemakers must meet a very high standard of performance to supplant electronic pacemakers," Vedantham says.

"Because even a few seconds without a heartbeat can lead to serious consequences, a biological pacemaker would need to exhibit very robust and reliable performance. It remains to be determined whether this will be technically feasible. Despite such challenges, the field is poised for rapid progress over the next few years," he adds.

Trends in Molecular Medicine, Vedantham, V.: "Rewiring the Heart: New Approaches to Biological Pacemakers"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cell Press
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLONE AGE
Aged neurons can now be generated using stem cell technology
Washington DC (SPX) Oct 12, 2015
Diseases of human aging have always been difficult to study in the lab. Stem cell technology always had promise, but when scientists reverted a skin cell from an 89-year-old woman back into a stem cell-like state, the cells became young again. Now, a new approach, presented October 8 in Cell Stem Cell, makes it possible to generate and grow cultures of neurons with gene expression reflecting a p ... read more


CLONE AGE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

CLONE AGE
Study: Mars to become a ringed planet following death of its moon

A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

CLONE AGE
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

CLONE AGE
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

CLONE AGE
ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

New Crew to Stay Aboard ISS for 7 Months Instead of 6

CLONE AGE
NASA Orders SpaceX Crew Mission to International Space Station

NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

CLONE AGE
Forming planet observed for first time

UA researchers capture first photo of planet in making

Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

CLONE AGE
Creating a new vision for multifunctional materials

3-D printing aids in understanding food enjoyment

Success in producing a completely rare-earth free Feni magnet

Bringing the chaos in light sources under control









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.