Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Breakthrough with a chain of gold atoms
by Staff Writers
Konstanz, Germany (SPX) Feb 21, 2017


This is an arists' view of the quantized thermal conductance of an atomically thin gold contact. Image courtesy Enrique Sahagun.

Heat transport is of similar fundamental importance and its control is for instance necessary to efficiently cool the ever smaller chips. An international team including theoretical physicists from Konstanz, Junior Professor Fabian Pauly and Professor Peter Nielaba and their staff, has achieved a real breakthrough in better understanding heat transport at the nanoscale.

The team used a system that experimentalists in nanoscience can nowadays realize quite routinely and keeps serving as the "fruit fly" for breakthrough discoveries: a chain of gold atoms. They used it to demonstrate the quantization of the electronic part of the thermal conductance. The study also shows that the Wiedemann-Franz law, a relation from classical physics, remains valid down to the atomic level. The results were published in the scientific journal "Science" on 16 February 2017.

To begin with, the test object is a microscopic gold wire. This wire is pulled until its cross section is only one atom wide and a chain of gold atoms forms, before it finally breaks. The physicists send electric current through this atomic chain, that is through the thinnest wire conceivable.

With the help of different theoretical models the researchers can predict the conductance value of the electric transport, and also confirm it by experiment. This electric conductance value indicates how much charge current flows when an electrical voltage is applied. The thermal conductance, that indicates the amount of heat flow for a difference in temperature, could not yet be measured for such atomic wires.

Now the question was whether the Wiedemann-Franz law, that states that the electric conductance and the thermal conductance are proportional to each other, remains valid also at the atomic scale. Generally, electrons as well as atomic oscillations (also called vibrations or phonons) contribute to heat transport.

Quantum mechanics has to be used, at the atomic level, to describe both the electron and the phonon transport. The Wiedemann-Franz law, however, only describes the relation between macroscopic electronic properties. Therefore, initially the researchers had to find out how high the contribution of the phonons is to the thermal conductance.

The doctoral researchers Jan Klockner and Manuel Matt did complementary theoretical calculations, which showed that usually the contribution of phonons to the heat transport in atomically thin gold wires is less than ten percent, and thus is not decisive. At the same time, the simulations confirm the applicability of the Wiedemann-Franz law.

Manuel Matt used an efficient, albeit less accurate method that provided statistical results for many gold wire stretching events to calculate the electronic part of the thermal conductance value, while Jan Klockner applied density functional theory to estimate the electronic and phononic contributions in individual contact geometries.

The quantization of the thermal conductance in gold chains, as proven by experiment, ultimately results from the combination of three factors: the quantization of the electrical conductance value in units of the so-called conductance quantum (twice the inverse Klitzing constant 2e2/h), the negligible role of phonons in heat transport and the validity of the Wiedemann-Franz law.

For quite some time it has been possible to theoretically calculate, with the help of computer models as developed in the teams of Fabian Pauly and Peter Nielaba, how charges and heat flow through nanostructures.

A highly precise experimental setup, as created by the experimental colleagues Professor Edgar Meyhofer and Professor Pramod Reddy from the University of Michigan (USA), was required to be able to compare the theoretical predictions with measurements.

In previous experiments the signals from the heat flow through single atom contacts were too small. The Michigan group succeeded in improving the experiment: Now the actual signal can be filtered out and measured.

The results of the research team make it possible to study heat transport not only in atomic gold contacts but many other nanosystems.

They offer opportunities to experimentally and theoretically explore numerous fundamental quantum heat transport phenomenona that might help to use energy more efficiently, for example by exploiting thermoelectricity.

TECH SPACE
Breakthrough in 'wonder' materials paves way for flexible tech
Warwick, UK (SPX) Feb 17, 2017
Gadgets are set to become flexible, highly efficient and much smaller, following a breakthrough in measuring two-dimensional 'wonder' materials by the University of Warwick. Dr Neil Wilson in the Department of Physics has developed a new technique to measure the electronic structures of stacks of two-dimensional materials - flat, atomically thin, highly conductive, and extremely strong mat ... read more

Related Links
University of Konstanz
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia to carry out tourist flights around Moon by 2022

Study: People don't want their future revealed

NASA selects proposals for first-ever Space Technology Research Institutes

NASA saves energy and water with new modular supercomputing facility

TECH SPACE
Russian Aviation Company S7 Group restructures

Russia successfully launches space freighter after crash

Energia to make 2 modifications of Federatsiya spaceship

SpaceX cargo ship arrives at space station

TECH SPACE
Opportunity leaving crater rim for the Plains of Meridiani

NASA mulls putting astronauts on deep space test flight

Scientists say Mars valley was flooded with water not long ago

Researchers pinpoint watery past on Mars

TECH SPACE
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

TECH SPACE
ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

TECH SPACE
Penn researchers are among the first to grow a versatile 2-dimensional material

Breakthrough with a chain of gold atoms

Breakthrough in 'wonder' materials paves way for flexible tech

When ultrafast laser pulse meets magnetic materials

TECH SPACE
Does Pluto Have The Ingredients For Life?

Prediction: More gas-giants will be found orbiting Sun-like stars

From Rocks, Evidence of a 'Chaotic Solar System'

Ultracool Dwarf and the Seven Planets

TECH SPACE
Europa Flyby Mission Moves into Design Phase

Juno to remain in current orbit at Jupiter

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement