Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TECH SPACE
Breakthrough research shows chemical reaction in real time
by Staff Writers
Stanford CA (SPX) Mar 24, 2013


New experiments at the Linac Coherent Light Source, an X-ray free-electron laser, took an unprecedented look at the way carbon monoxide molecules react with the surface of a catalyst in real time. Credit: Greg Stewart / SLAC National Accelerator Laboratory.

The ultrafast, ultrabright X-ray pulses of the Linac Coherent Light Source (LCLS) have enabled unprecedented views of a catalyst in action, an important step in the effort to develop cleaner and more efficient energy sources.

Scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory used LCLS, together with computerized simulations, to reveal surprising details of a short-lived early state in a chemical reaction occurring at the surface of a catalyst sample. The study offers important clues about how catalysts work and launches a new era in probing surface chemistry as it happens.

"To study a reaction like this in real time is a chemist's dream," said Anders Nilsson, deputy director for the Stanford and SLAC SUNCAT Center for Interface Science and Catalysis and a leading author in the research, published Mar. 15 in Science. "We are really jumping into the unknown."

Catalysts, which can speed up chemical reactions and make them more efficient and effective, are essential to most industrial processes and to the production of many chemicals. Catalytic converters in cars for example, reduce emissions by converting exhaust to less toxic compounds.

Understanding how catalysts work, at ultrafast time scales and with molecular precision, is essential to producing new, lower-cost synthetic fuels and alternative energy sources that reduce pollution, Nilsson said.

In the LCLS experiment, researchers looked at a simple reaction in a crystal composed of ruthenium, a catalyst that has been extensively studied, in reaction with carbon monoxide gas. The scientists zapped the crystal's surface with a conventional laser, which caused carbon monoxide molecules to begin to break away.

They then probed this state of the reaction using X-ray laser pulses, and observed that the molecules were temporarily trapped in a near-gas state and still interacting with the catalyst. "We never expected to see this state," Nilsson said. "It was a surprise."

Not only was the experiment the first to confirm the details of this early stage of the reaction, it also found an unexpectedly high share of molecules trapped in this state for far longer than what was anticipated, raising new questions about the atomic-scale interplay of chemicals that will be explored in future research.

Some of the early stages of a chemical reaction are so rapid that they could not be observed until the creation of free-electron lasers such as LCLS, said Jens Norskov, director for SUNCAT. Future experiments at LCLS will examine more complex reactions and materials, Nilsson said. "There is potential to probe a number of catalytic-relevant processes - you can imagine there are tons of things we could do from here."

Important preliminary research was conducted at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL), and this direct coupling of research at SLAC's synchrotron and X-ray laser proved essential, said Hirohito Ogasawara, a staff scientist at SSRL.

Collaborators participating in the research were from SLAC, Stanford University, the University of Hamburg and Center for Free Electron Laser Science, Helmholtz-Zentrum Berlin for Materials and Energy, the University of Potsdam and Fritz-Haber Institute of the Max Planck Society in Germany, Stockholm University in Sweden and the Technical University of Denmark.

This work was supported by the DOE's Office of Science, the Swedish National Research Council, the Danish Center for Scientific Computing, the Volkswagen Stiftung and the Lundbeck Foundation.

M. Dell'Angela et al., Science, 14 Mar 2013 (10.1126/science.1231711)

.


Related Links
DOE/SLAC National Accelerator Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Novel technique for chemical identification at the nanometer scale developed
Urbana IL (SPX) Mar 14, 2013
For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now. Researchers at the University Illinois report that they have measured the chemical properties of polymer nanostructures as smal ... read more


TECH SPACE
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

TECH SPACE
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

TECH SPACE
Lockheed Martin to Continue Providing Life Sciences Support To NASA

U.S. Astronomers Call on Congress to Support R and D Investments

NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

TECH SPACE
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

TECH SPACE
New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

TECH SPACE
Dragon capsule to spend extra day in space

Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

TECH SPACE
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

TECH SPACE
Record simulations conducted on Lawrence Livermore supercomputer

Breakthrough research shows chemical reaction in real time

Mainz scientists create new flexible mineral inspired by deep-sea sponges

NTU scientist develops a multi-purpose wonder material to tackle environmental challenges




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement