. 24/7 Space News .
TECH SPACE
Breakthrough enables ultra-fast transport of electrical charges in polymers
by Staff Writers
Umea, Sweden (SPX) Jan 29, 2016


Vertically aligned chains in the organic semiconducting polymer inside microscopic patterns. Image courtesy Umea University. For a larger version of this image please go here.

A research team at Umea University in Sweden has showed, for the first time, that a very efficient vertical charge transport in semiconducting polymers is possible by controlled chain and crystallite orientation. These pioneering results, which enhance charge transport in polymers by more than 1,000 times, have implications for organic opto-electronic devices and were recently published in the journal Advanced Materials.

Conjugated semiconducting polymers (plastic) possess exceptional optical and electronic properties, which make them highly attractive in the production of organic opto-electronic devices, such as for instance photovoltaic solar cells (OPV), light emitting diodes (OLED) and lasers.

Polythiophene polymers, such as poly(3-hexylthiophene), P3HT, have been among the most studied semiconducting polymers due to their strong optical absorbance and ease of processing into a thin film from solution. In both OPVs and OLEDs, charges must be transported in the out of plane (vertical) direction inside the polymer film.

However, until now the vertical charge carrier mobility of organic semiconductors, i.e. the ability of charges to move inside the material, has been too low to produce fast charge transport in electronic devices. Faster charge transport can occur along the polymer chain backbone. However, a method to produce controlled chain orientation and high mobility in the vertical direction has remained elusive until now.

In the present work, a team of chemists and materials scientists, led by Professor David R. Barbero at Umea University, has found a new method to align chains vertically and to produce efficient transport of electric charges through the chain backbone. In this new study, moreover, high charge transport and high mobility were obtained without any chemical doping, which is often used to artificially enhance charge transport in polymers.

"The transport of electric charge is greatly enhanced solely by controlled chain and crystallite orientation inside the film. The mobility measured was approximately one thousand times higher than previously reported in the same organic semiconductor," says David Barbero.

In what way will these results affect the field of organic electronics?

"We believe these results will impact the fields of polymer solar cells and organic photodiodes, where the charges are transported vertically in the device. Organic-based devices have traditionally been slower and less efficient than inorganic ones (e.g. made of silicon), in part due to the low mobility of organic (plastic) semiconductors.

"Typically, plastic semiconductors, which are only semi-crystalline, have hole mobilities about 10,000 times lower than doped silicon, which is used in many electronic devices. Now we show it is possible to obtain much higher mobility, and much closer to that of silicon, by controlled vertical chain alignment, and without doping," says David Barbero.

The charge transport was measured using nanoscopic electrical measurements, and gave a mobility averaging 3.1 cm2/V.s, which is the highest mobility ever measured in P3HT, and which comes close to a theoretical estimation of the maximum mobility in P3HT.

Crystallinity and molecular packing characterisation of the polymer was performed by synchrotron X-ray diffraction at Stanford University's National Accelerator (SLAC) and confirmed that the high mobilities measured were due to the re-orientation of the polymer chains and crystallites, leading to fast charge transport along the polymer backbones.

These results, published in Advanced Materials, may open up the route to produce more efficient organic electronic devices with vertical charge transport (e.g. OPV, OLED, lasers etc.), by a simple and inexpensive method, and without requiring chemical modification of the polymer.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Umea University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Weaving a new story for COFS and MOFs
Berkeley CA (SPX) Jan 26, 2016
There are many different ways to make nanomaterials but weaving, the oldest and most enduring method of making fabrics, has not been one of them - until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent or ... read more


TECH SPACE
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

TECH SPACE
Opportunity Abrasion Tool Conducts Two Rock Grinds

Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

TECH SPACE
Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

Russian Space Agency discussing possible training of Iranian astronaut

TECH SPACE
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

TECH SPACE
Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

TECH SPACE
Ariane 5 is readied for an Arianespace leading customer Intelsat

Roscosmos Approves Delay of Eutelsat 9B Launch Due to Bad Weather

Assembly begins on 2nd Ariane 5 launcher for 2016

EpicNG satellite installed on Ariane 5 for launch

TECH SPACE
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

TECH SPACE
Acoustic tweezers provide much needed pluck for 3-D bioprinting

Designing a pop-up future

Chanel swaps bling for eco-inspired haute couture

Material may offer cheaper alternative to smart windows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.