Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Breaking metamaterial symmetry with reflected light
by Staff Writers
Washington DC (SPX) Apr 13, 2016


This gold metamaterial nanostructure is a nanoscale version of the structure described by the University of Southampton researchers in Applied Physics Letters, and it exhibits large specular optical activity for oblique incidence illumination with light (rather than specular optical activity for microwaves). Image courtesy Eric Plum, Vassili A. Fedotov, and Nikolay I. Zheludev. For a larger version of this image please go here.

Optical activity - rotation of the polarization of light - is well known to occur within materials that differ from their mirror image. But what happens if this symmetry is broken by the direction of illumination rather than the material itself?

Curiosity about this question has led to the discovery of a new type of optical activity. As a group of University of Southampton researchers report in Applied Physics Letters, from AIP Publishing, breaking the symmetry of metamaterials with reflected light will enable novel applications because it causes optical activity of unprecedented magnitude - far exceeding previously known specular or "mirror-like" optical activity.

At the heart of the group's work are metamaterials - materials constructed with unique shapes and symmetries that generate properties which don't occur in their natural counterparts.

"Natural materials derive their properties from the atoms, ions, or molecules they consist of. Similarly, the basic concept behind metamaterials is to assemble artificial materials from 'metamolecules,' which are manmade elementary building blocks," explained Eric Plum, a research lecturer at the University of Southampton's Optoelectronics Research Centre and Centre for Photonic Metamaterials.

"This provides a huge technological opportunity," Plum pointed out. "Instead of being limited by available natural materials, we can design materials with the properties we want. This has already led to the demonstration of various enhanced and novel material properties and functionalities."

Metamaterials appear homogenous to electromagnetic waves because their artificial structure is of subwavelength size - metamaterials for light are structured on the nanoscale, while those for microwaves are structured on the scale of millimeters or centimeters.

The group is interested in the twisted, or "chiral," structures found within many natural and artificial materials because they come with the ability to rotate the polarization state of transmitted light - a property known as optical activity. This property is the basis for applications ranging from LCD displays to spectroscopy, and even detection of life during space missions.

While the optical activity for light reflected by natural materials is negligible, the researchers found that the same isn't at all true for metamaterials.

"Our metamaterial exhibits huge optical activity for reflected electromagnetic waves," Plum said. "This is particularly remarkable considering that our artificial structure is extremely thin - 30 times thinner than the wavelength of the electromagnetic radiation it manipulates."

Perhaps just as surprising, the optically active material involved isn't actually chiral. "Instead, optical activity arises from a chiral experimental arrangement associated with the mutual orientation of the direction of the illumination and the structure of the metamaterial, which lacks two-fold rotational symmetry," he elaborated.

The group's discovery paves the way for "a whole new class of extremely thin and light devices for controlling and detecting the polarization of light, such as polarization rotating and circularly polarizing beam splitters and mirrors, as well as optical isolators for circularly polarized light," Plum said.

In terms of more fundamental implications, the group's observed effect mimics the longitudinal magneto-optical Kerr effect - in which the light reflected from a magnetized surface can change in both reflected intensity and polarity - without a magnetized medium.

"This has significant implications for Kerr microscopy, because it could be mistaken for magnetization," he added.

Plum and colleagues are now busy developing practical solutions to enable dynamic control of specular optical activity for applications such as active polarization modulation.

"It would also be interesting to study the effect in natural materials and to explore the consequences of similar types of 'symmetry breaking' of other physical systems," Plum said.

The article, "Specular optical activity of achiral metasurfaces," is authored by Eric Plum, Vassili A. Fedotov and Nikolay I. Zheludev. It will appear in the journal of Applied Physics Letters April 5, 2016 [DOI: 10.1063/1.4944775].

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Ruthenium nanoframes open the doors to better catalysts
Houghton MI (SPX) Apr 07, 2016
The world is run by catalysts. They clean up after cars, help make fertilizers, and could be the key to better hydrogen fuel. Now, a team of chemists, led by Xiaohu Xia from Michigan Technological University, has found a better way to make metal nanoframe catalysts. Last week, Nano Letters published the team's study, which covers how the researchers made a catalyst for the first time out o ... read more


TECH SPACE
Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

TECH SPACE
Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

Mars Longevity Champion Launched 15 Years Ago

TECH SPACE
Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

TECH SPACE
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

TECH SPACE
Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

TECH SPACE
SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

NASA Progresses Toward SpaceX Resupply Mission to Space Station

TECH SPACE
Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

New tool refines exoplanet search

Stars strip away atmospheres of nearby super-Earths

TECH SPACE
GenDyn completes Space Fence radar array structure

'Self-healing' plastic could mean better bandages, tougher phone cases

Ruthenium nanoframes open the doors to better catalysts

Artificial molecules




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement