. 24/7 Space News .
TIME AND SPACE
Boron atoms stretch out, gain new powers
by Staff Writers
Houston TX (SPX) Jan 31, 2017


A simulation of one-dimensional boron under stress shows the theoretical material changing phase from a ribbon to a chain of atoms when pulled. The chain returns to ribbon form when the stress is relieved. Image courtesy Yakobson Research Group.

Hold on, there, graphene. You might think you're the most interesting new nanomaterial of the century, but boron might already have you beat, according to scientists at Rice University.

A Rice team that simulated one-dimensional forms of boron - both two-atom-wide ribbons and single-atom chains - found they possess unique properties. The new findings appear this week in the Journal of the American Chemical Society.

For example, if metallic ribbons of boron are stretched, they morph into antiferromagnetic semiconducting chains, and when released they fold back into ribbons.

The 1-D boron materials also have mechanical stiffness on a par with the highest-performing known nanomaterials.

And they can act as nanoscale, constant-force springs.

Experimental labs are making progress in synthesizing atom-thin and fullerene-type boron, which led Rice researcher Boris Yakobson to think 1-D boron may eventually become real as well.

Yakobson's lab creates atom-level computer simulations of materials that do not necessarily exist - yet. Simulating and testing their energetic properties helps guide experimentalists working to create real-world materials. Carbon-atom chains known as carbyne, boron fullerenes and two-dimensional films called borophene, all predicted by the Rice group, have since been created by labs.

"Our work on carbyne and with planar boron got us thinking that a one-dimensional chain of boron atoms is also a possible and intriguing structure," Yakobson said. "We wanted to know if it is stable and what the properties would be. That's where modern theoretical-computational methods are impressive, because one can do pretty realistic assessments of non-existing structures.

"Even if they never exist, they're still important since we're probing the limits of possibility, sort of the final frontier," he said.

One-dimensional boron forms two well-defined phases - chains and ribbons - which are linked by a "reversible phase transition," meaning they can turn from one form to the other and back.

To demonstrate these interesting chemomechanics, the researchers used a computer to "pull" the ends of a simulated boron ribbon with 64 atoms. This forced the atoms to rearrange into a single carbyne-like chain. In their simulation, the researchers left a fragment of the ribbon to serve as a seed, and when they released the tension, the atoms from the chain neatly returned to ribbon form.

"Boron is very different from carbon," Yakobson said. "It prefers to form a double row of atoms, like a truss used in bridge construction. This appears to be the most stable, lowest-energy state.

"If you pull on it, it starts unfolding; the atoms yield to this monatomic thread. And if you release the force, it folds back," he said. "That's quite fun, structurally, and at the same time it changes the electronic properties.

"That makes it an interesting combination: When you stretch it halfway, you may have a portion of ribbon and a portion of chain. Because one of them is metal and the other is a semiconductor, this becomes a one-dimensional, adjustable Schottky junction." A Schottky junction is a barrier to electrons at a metal-semiconductor junction and is commonly used in diodes that allow current to flow in only one direction.

As a ribbon, boron is "a true 1-D metal robust to distortion of its crystalline lattice (a property known as Peierls distortion)," the researchers wrote. That truss-like construct gives the material extraordinary stiffness, a measure of its ability to resist deformation from an applied force.

As a chain of atoms, the material is also a strain-tunable, wide-gap antiferromagnetic semiconductor. In an antiferromagnet, the atomic moments - the direction of the atoms' "up" or "down" spin states - align in opposite directions.

This coupling of magnetic state and electronic transport may be of great interest to researchers studying spintronics, in which spin states may be manipulated to create high-performance electronic devices. "It may be very useful because instead of charge transport, you can have spin transport. That's considered an important direction for devices that make use of spintronics," he said.

One-dimensional boron's springiness is also interesting, Yakobson said. "It's also a special spring, a constant-force spring," he said. "The more you stretch a mechanical spring, the more the force goes up. But in the case of 1-D boron, the same force is required until the spring becomes fully stretched. If you keep pulling, it will break. But if you release the force, it completely folds back into a ribbon. It's a mechanically nice structure." That property could be useful in nanoscale sensors to gauge very small forces, he said.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Astronomers measure universe expansion, get hints of 'new physics'
Davis CA (SPX) Jan 27, 2017
Astronomers have just made a new measurement of the Hubble Constant, the rate at which the universe is expanding, and it doesn't quite line up with a different estimate of the same number. That discrepancy could hint at "new physics" beyond the standard model of cosmology, according to the team, which includes physicists from the University of California, Davis, that made the observation. ... read more


TIME AND SPACE
Progress MS-03 cargo spacecraft to reenter January 31

Scientists and students tackle omics at NASA workshop

Airbus delivers propulsion test module for the Orion programme to NASA

Mister Trump Goes to Washington

TIME AND SPACE
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Major review completed for SLS Exploration Upper Stage

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

TIME AND SPACE
Commercial Crew's Role in Path to Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Opportunity marks 13 years of ground operations on Mars

Bursts of methane may have warmed early Mars

TIME AND SPACE
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

TIME AND SPACE
Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

TIME AND SPACE
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

NASA studies cosmic radiation to protect high-altitude travelers

TIME AND SPACE
New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

TIME AND SPACE
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.