Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Body temperature triggers newly developed polymer to change shape
by Staff Writers
Rochester NY (SPX) Feb 11, 2016


A time-lapse photo of a new shape-memory polymer reverting to its original shape after being exposed to body temperature. Image courtesy Adam Fenster/University of Rochester. For a larger version of this image please go here.

Polymers that visibly change shape when exposed to temperature changes are nothing new. But a research team led by Chemical Engineering Professor Mitch Anthamatten at the University of Rochester created a material that undergoes a shape change that can be triggered by body heat alone, opening the door for new medical and other applications.

The material developed by Anthamatten and graduate student Yuan Meng is a type of shape-memory polymer, which can be programmed to retain a temporary shape until it is triggered - typically by heat - to return to its original shape.

"Tuning the trigger temperature is only one part of the story," said Anthamatten. "We also engineered these materials to store large amount of elastic energy, enabling them to perform more mechanical work during their shape recovery"

The findings are being published this week in the Journal of Polymer Science Part B: Polymer Physics.

The key to developing the new polymer was figuring out how to control crystallization that occurs when the material is cooled or stretched. As the material is deformed, polymer chains are locally stretched, and small segments of the polymer align in the same direction in small areas - or domains - called crystallites, which fix the material into a temporarily deformed shape. As the number of crystallites grows, the polymer shape becomes more and more stable, making it increasingly difficult for the material to revert back to its initial - or "permanent" - shape.

The ability to tune the trigger temperature was achieved by including molecular linkers to connect the individual polymer strands. Anthamatten's group discovered that linkers inhibit - but don't stop - crystallization when the material is stretched. By altering the number and types of linkers used, as well as how they're distributed throughout the polymer network, the Rochester researchers were able to adjust the material's stability and precisely set the melting point at which the shape change is triggered.

Heating the new polymer to temperatures near 35C, just below the body temperature, causes the crystallites to break apart and the material to revert to its permanent shape.

"Our shape-memory polymer is like a rubber band that can lock itself into a new shape when stretched," said Anthamatten. "But a simple touch causes it to recoil back to its original shape."

Having a polymer with a precisely tunable trigger temperature was only one objective. Of equal importance, Anthamatten and his team wanted the material to be able to deliver a great deal of mechanical work as the shape transforms back to its permanent shape. Consequently, they set out to optimize their polymer networks to store as much elastic energy as possible.

"Nearly all applications of shape memory polymers will require that the material pushes or pulls on its surroundings," said Anthamatten. "However, researchers seldom measure the amount of mechanical work that shape-memory polymers are actually performing."

Anthamatten's shape-memory polymer is capable of lifting an object one-thousand times its weight. For example, a polymer the size of a shoelace - which weighs about a gram - could lift a liter of soda.

Anthamatten says the shape-memory polymer could have a variety of applications, including sutures, artificial skin, body-heat assisted medical dispensers, and self-fitting apparel.

.


Related Links
University of Rochester
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
A deep look into a single molecule
Braunschweig, Germany (SPX) Feb 10, 2016
The interaction of thermal energy from the environment with motional degrees of freedom is well known and often referred to as Brownian motion (also thermal motion). But in the case of polar molecules, the internal degrees of freedom - in particular the rotational quantum state - are also influenced by the thermal radiation. So far, the detection of the rotational state was only possible by dest ... read more


TECH SPACE
ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Phase of the moon affects amount of rainfall

Russia postpones manned Lunar mission to 2035

TECH SPACE
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

TECH SPACE
Are private launches changing the rocket equation?

The Orion Crew Module Pressure Vessel Ready For Testing

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Innovations in the Air

TECH SPACE
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

TECH SPACE
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

TECH SPACE
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

TECH SPACE
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

TECH SPACE
Metal oxide sandwiches: New option to manipulate properties of interfaces

Making sense of metallic glass

A fast solidification process makes material crackle

Researchers discover new phase of boron nitride and a new way to create pure c-BN




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.