Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Bending helps to control nanomaterials
by Staff Writers
Helsinki, Finland (SPX) May 23, 2014


File image.

A new remedy has been found to tackle the difficulty of controlling layered nanomaterials. Control can be improved by simply bending the material.

The mechanism was observed by Academy Research Fellow Pekka Koskinen from the Nanoscience Center of the University of Jyvaskyla together with his colleagues from the University of Massachusetts Amherst in the US. Bending decreases interaction between layers, making the material merely a stack of independent atomic layers.

The group investigated the van der Waals nanomaterials which consist of stacked and loosely bound two-dimensional atomic layers. It is experimentally difficult to control the number of layers in the stacks - and each layer may affect the electric and optical properties of the material dramatically.

It's as if the apparent color of a stack of papers would change wildly while adding or removing individual sheets, Pekka Koskinen illustrates the situation using a fictitious example.

Bending effectively detaches the layers from each other. The mechanism was observed while investigating layered molybdenum disulphide but it is expected to be valid for the van der Waals materials in general. The results were published in the esteemed journal Physical Review Letters.

According to Koskinen, the observation advances research in nanoelectronics and optoelectronics because it markedly simplifies the interpretation and understanding of the electronic and optical properties of layered materials. The research was computational and the found mechanism is still a prediction.

In nanoscience, experimental and theoretical research advance side by side. This time the prediction came first, and now we eagerly await for an experimental confirmation, Koskinen says.

P. Koskinen, I. Fampiou, A. Ramasubramaniam, Density-Functional Tight-Binding Simulations of Curvature-Controlled Layer Decoupling and Band-Gap Tuning in Bilayer MoS2, Physical Review Letters 112, 186802 (2014)

.


Related Links
Academy of Finland
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Engineers build world's smallest, fastest nanomotor
Austin TX (SPX) May 22, 2014
Researchers at the Cockrell School of Engineering at The University of Texas at Austin have built the smallest, fastest and longest-running tiny synthetic motor to date. The team's nanomotor is an important step toward developing miniature machines that could one day move through the body to administer insulin for diabetics when needed, or target and treat cancer cells without harming good cells ... read more


NANO TECH
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

NANO TECH
When fantasy becomes reality: first seeds to be planted soon on Mars

NASA's Saucer-Shaped Craft Preps for Flight Test

NASA Mars Rover Curiosity Wrapping Up Waypoint Work

Cascading dunes in a martian crater

NANO TECH
Britain's Longitude Prize back after 300-year absence

Sea level rise forces US space agency to retreat

A light-speed voyage to the distant future

US spacecraft enters giant asteroid's orbit

NANO TECH
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

NANO TECH
New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Rounding up the BCATs on the ISS

Botanical Studies, Dragon Departure Preps for ISS Crew

NANO TECH
SpaceX-3 Mission To Return Dragon's Share of Space Station Science

SpaceX supply capsule heads back to Earth

SpaceX's Dragon spacecraft returns to Earth from space station

Replacing Russian-made rocket engines is not easy

NANO TECH
Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

Length of Exoplanet Day Measured for First Time

NANO TECH
Is there really cash in your company's trash?

Computer simulations enable better calculation of interfacial tension

Professors' super waterproof surfaces cause water to bounce like a ball

New Technique Safely Penetrates Top Coat for Perfect Paint Job




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.