Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Behind the dogmas of good old hydrodynamics
by Staff Writers
Moscow (SPX) Mar 27, 2015


An electric field, created by a small battery or another power source, could be a cause of a fast fluid flow along a solid surface. In the figure the red and the black beads stand for the ions and the yellow ones for the solvent. And the blue beads represent the molecules of the fluid. They illustrate the fluid velocity profile and it is clear that the profile in the center of the channel is flat. Image courtesy Olga Vinogradova et al. For a larger version of this image please go here.

A new theory, which gives new insights into the transport of liquid flowing along the surface under applied electric field, was developed by the group of Russian scientists lead by Olga Vinogradova who is a professor at the M.V.Lomonosov Moscow State University and also a head of laboratory at the A.N. Frumkin Institute of Physical chemistry and Electrochemistry of the Russian Academy of Sciences.

It may be used in the future in research in physics, chemistry and biology and in many applications including medicine and pharmaceutics. The article describing the theory and simulations is published in Physical Review Letter which is one of the one of the most prestigious journals in physics. It's impact factor is 7.8.

The motion of liquid through the capillaries, porous membranes, or thin channel under applied electric field is called an electroosmotic flow. This effect was discovered by the professor of the Moscow University Ferdinand Friedrich Reuss in 1807 during a pretty simple experiment.

It involves the curved glass tube filled with water and its bend filled with insoluble powdered substance such as grated stone or sand which creates a porous barrier separating both ends of the tube from each other. When the voltage is applied to the water, it begins to seep through the barrier as shown in Figure 2. The motion of dispersed particles relative to a fluid under the influence of electric field was named electrophoresis.

Behind the apparent simplicity of the effect lies pretty complicated physics. It was understood only a century later in 1909 when the Polish physicist Marian Smoluchowski succeeded in describing the process of electroosmotic flow theoretically.

Nobody questioned his theory during the XX century, and now it turned to be only a special case of more general theory. Moreover, it is applicable only to cases similar to Smoluchowski's one when the liquid flows past the wettable hydrophilic surface and no-slip boundary conditions are taken into account. Now it appears that entirely different conditions are needed to be applied in cases of hydrophobic poorly wettable surfaces.

This small "nuance" was discovered just in time, because such sciences as microfluidics and nanofluidics deal with the fluid flowing through ultrathin channels. And it is difficult to drive flows mechanically in extremely thin channels even by applying a pressure drop which in this case should be enormously high. However, if the conventional pump is replaced by the battery, then it is possible to establish fast electroosmotic flow in the ultrathin channel.

Sometimes physicists have to leave behind the dogmas of good old hydrodynamics. The authors of the article, who in addition to Olga Vinogradova are the young scientists Salim Maduar and Alexey Belyaev, have shown theoretically and confirmed in computer experiments that in quantitative description of flows in electric fields for hydrophobic surface electro-hydrodynamic slip boundary condition should be imposed. The new approach has immediately changed the picture.

Tthe electro-osmotic flow is caused by the cloud of ions with the opposite sign, which forms near the charged surface of the fluid. There are two possible cases. In the first one the surface charges are immobile and able to move along the surface under the electric field applied. In the case of immobile charges everything is relatively simple as the speed of electro-osmotic flow increases due to hydrophobic slippage.

In case surface charges can react on the applied electric field, as scientists imply, lots of different variants arise, some of which are quite unexpected. For instance, in the article it is shown that it is possible to induce the electro-osmotic flow even near uncharged surface, or, on the contrary, to suppress such a flow completely in the channels with perfectly slipping charged walls.

The lead role in the Smoluchowski theory was given to so-called zeta potential which is a physiochemical parameter calculated with a special formula and reflects the degree of electroosmotic and electrophoretic mobility. The higher the zeta potential is the faster is the flow of a liquid or particle motion.

Until recently zeta potential was considered equal to the surface potential of the solid at its boundary with the liquid. In the new theory zeta-potential also plays the leading role, but its interpretation became much more complicated.

"In the Smoluchowski theory zeta potential is equal to the potential of the surface itself and is independent of neighbouring surfaces, -- Olga Vinogradova explains -- These conclusions are the result of the classical no-slip hydrodynamic conditions". Olga Vinorgradova and her colleagues have shown that in the case of hydrophobic surfaces it occurs differently as the hydrophobic surfaces are slippery and ions associated with the slippery surface can respond to an electric field.

So zeta potential appears to be connected with the parameters which characterize the mobility of surface charge and hydrodynamic slippage on the surface and the dependency of the possible presence of the other surface.

The new theory makes life both more complicated and more coherent as it has immediately allowed to resolve a number of paradoxes, which were doubtful for years. For instance, it gave an explanation to the zeta potential measurements of bubbles and drops.

"These measurements have been consistently showing that their zeta potentials are similar to those of the solid body" - Olga Vinogradova says - "Which was explained in particular by the presence of impurities on the surfaces of bubbles and drops. We have shown that the impurities are irrelevant and that zeta potential in this case is indeed the same as for the solid body, but due to completely different reasons." The theory also helped to understand the highly debated electro-osmotic flows in foam films.

According to Olga Vinogradova, the possible practical implementations of the new theory are quite extensive at least for the reason that the concept of zeta potential is widely used in many fields of science and technology, such as medicine, pharmaceuticals, mineral processing, water treatment, purification of soil from pollution and even more.

New interpretation of the parameter will give a better understanding of the results of its experimental measurements and will also make possible to control its value. Particularly promising application of the new theory lies in the field of microfluidics and nanofluidics. Especially it could be used for the creation of Lab-on-a-Chip (LOC) devices and nanofluidic diodes, which are already used for the detection and the separation of biomolecules and for the energy harvesting.

"Without no doubt, the path from the new theory to practical applications is always very long, -- Olga Vinogradova says, -- And I suppose the experimentalists would be the first ones to use our results."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lomonosov Moscow State University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Short circuit delays particle hunter machine restart
Geneva (AFP) March 25, 2015
A short-circuit at the world's largest proton smasher has indefinitely delayed the particle-hunting machine's planned restart, the European Organisation for Nuclear Research (CERN) said on Wednesday. The error occurred last Saturday in one of the Large Hadron Collider's (LHC) magnet circuits, the laboratory said in a statement. "It is a well understood issue, but one that could take time ... read more


TIME AND SPACE
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

TIME AND SPACE
Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

NASA Reformats Memory of Longest-Running Mars Rover

TIME AND SPACE
Feud on Earth but peace in space for US and Russia

Russia Plans to Boost Space Tourism at Orbital Outpost

50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

TIME AND SPACE
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

TIME AND SPACE
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

TIME AND SPACE
Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

United Launch Alliance Launches Second Mission in Less than Two Weeks

UAE Moves to Purchase Russian Spacecraft Launch Platform

DoD Works to Build Competition Into Space Launches

TIME AND SPACE
Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

TIME AND SPACE
Ground broken for Space Fence installation

Data structures influence speed of quantum search in unexpected ways

New optical materials break digital connectivity barriers

Japan military eyes recruits with cutesy smartphone game




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.