Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CARBON WORLDS
Beautiful, consistent carbon belts
by Staff Writers
Nagoy, Japan (SPX) May 14, 2017


A carbon nanobelt, represented as a ball-and stick model and space-filing model. Carbon atoms are colored in orange and gray and hydrogen atoms are colored in white. Credit ITbM, Nagoya University

Chemists have tried to synthesize carbon nanobelts for more than 60 years, but none have succeeded until now. A team at Nagoya University reported the first organic synthesis of a carbon nanobelt in Science. Carbon nanobelts are expected to serve as a useful template for building carbon nanotubes and open a new field of nanocarbon science.

The new nanobelt, measuring 0.83 nanometer (nm) in diameter, was developed by researchers at Nagoya University's JST-ERATO Itami Molecular Nanocarbon Project, and the Institute of Transformative Bio-Molecules (ITbM). Scientists around the world have tried to synthesize carbon nanobelts since the 1950s and Professor Kenichiro Itami's group has worked on its synthesis for 12 years.

"Nobody knew whether its organic synthesis was even possible or not," says Segawa, one of the leaders of this study who had been involved in its synthesis for 7 and a half years. "However, I had my mind set on the synthesis of this beautiful molecule."

Carbon nanobelts are belt-shaped molecules composed of fused benzene rings, which are aromatic rings consisting of six carbon atoms. Carbon nanobelts are a segment of carbon nanotubes, which have various applications in electronics and photonics due to their unique physical characteristics.

Current synthetic methods produce carbon nanotubes with inconsistent diameters and sidewall structures, which changes their electrical and optical properties. This makes it extremely difficult to isolate and purify a single carbon nanotube that has a specific diameter, length and sidewall structure. Therefore, being able to precisely control the synthesis of structurally uniform carbon nanotubes will help develop novel and highly functional materials.

Carbon nanobelts have been identified as a way to build structurally uniform carbon nanotubes. However, synthesizing carbon nanobelts is challenging due to their extremely high strain energies. This is because benzene is stable when flat, but becomes unstable when they are distorted by fusion of the rings.

To overcome this problem, Guillaume Povie, a postdoctoral researcher of the JST-ERATO project, Yasutomo Segawa, a group leader of the JST-ERATO project, and Kenichiro Itami, the director of JST-ERATO project and the center director of ITbM, have succeeded in the first chemical synthesis of a carbon nanobelt from a readily available precursor, p-xylene (a benzene molecule with two methyl groups in the 1,4- (para-) position) in 11 steps.

The key to this success is their synthetic strategy based on the belt-shaped formation from a macrocycle precursor with relatively low ring strain. In their strategy, the team prepared a macrocycle precursor from p-xylene in 10 steps, and formed the belt-shaped aromatic compound by a coupling reaction. Nickel was essential to mediate the coupling process.

"The most difficult part of this research was this key coupling reaction of the macrocycle precursor," says Povie. "The reaction did not proceed well day after day and it took me three to four months for testing various conditions. I have always believed where there's a will, there's a way."

In 2015, Itami launched a new initiative in his ERATO project to focus particularly on the synthesis of the carbon nanobelt. At the so-called "belt festival," various new synthetic routes for the carbon nanobelt were proposed and more than 10 researchers were involved in the project.

On September 28, 2016, exactly a year after the start of the festival, the carbon nanobelt structure was finally revealed by X-ray crystallography in front of the Itami group members. Everyone held their breath while staring at the screen during X-ray analysis, and cheered when the cylindrical shape image of the carbon nanobelt appeared on the screen.

"It was one of the most exciting moments in my life and I will never forget it," says Itami. "Since this is the result of a decade-long study, I greatly appreciate all the past and current members of my group for their support and encouragement. Thanks to their skill, toughness, sense and strong will of all members, we achieved this successful result."

The synthesized carbon nanobelt is a red-colored solid and exhibits deep red fluorescence. Analysis by X-ray crystallography revealed that the carbon nanobelt has a cylindrical shape in the same manner as carbon nanotubes. The researchers also measured its light absorption and emission, electric conductivity and structural rigidity by ultraviolet-visible absorption fluorescence, and Raman spectroscopic studies, as well as theoretical calculations.

"Actually, the synthesis part was finished last August but I could not rest until I was able to confirm the X-ray structure of the carbon nanobelt," says Povie. "I was really happy when I saw the X-ray structure."

The carbon nanobelt will be released to the market in the future. "We are looking forward to discovering new properties and functionalities of the carbon nanobelt with researchers from all over the world," say Segawa and Itami.

Research Report: "Synthesis of a carbon nanobelt"

CARBON WORLDS
Chemically tailored graphene
Vienna, Austria (SPX) May 16, 2017
Two-dimensional graphene consists of single layers of carbon atoms and exhibits intriguing properties. The transparent material conducts electricity and heat extremely well. It is at the same time flexible and solid. Additionally, the electrical conductivity can be continuously varied between a metal and a semiconductor by, e.g., inserting chemically bound atoms and molecules into the grap ... read more

Related Links
Nagoya, Japan (SPX) May 16, 2017
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
External commercial ISS platform starts second mission

NASA Receives Proposals for Future Solar System Mission

'Road to Nowhere': Retired Cosmonaut Reveals How It Feels to Walk in Space

Orion Motor Ready for Crewed Mission

CARBON WORLDS
First Contract under Booster Propulsion Technology Maturation BAA Complete

GSLV Successfully Launches South Asia Satellite

ISRO Successfully Launches GSAT-9 'SAARC' South Asian Communication Satellite

Reaction Engines begins construction of UK rocket engine test facility

CARBON WORLDS
Seasonal Flows in Valles Marineris

NASA Rover Curiosity Samples Active Linear Dune on Mars

Is Anything Tough Enough to Survive on Mars

Japan aims to uncover how moons of Mars formed

CARBON WORLDS
China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

CARBON WORLDS
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

CARBON WORLDS
A bath for precision printing of 3-D silicone structures

Physical keyboards make virtual reality typing easier

Inverse designing spontaneously self-assembling materials

Scientists create hologram that changes images as it is stretched

CARBON WORLDS
Taking the pulse of an ocean world

When a brown dwarf is actually a planetary mass object

Lasers shed light on the inner workings of the giant larvacean

First SETI Institute Fellows Announced

CARBON WORLDS
Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement