. 24/7 Space News .
UAV NEWS
Balloons and drones and clouds
by Staff Writers
Albuquerque NM (SPX) Aug 16, 2017


Sandia National Laboratories unmanned aerial system expert Dave Novick examines an octocopter prior to the first joint balloon-UAS test in May. Image courtesy Randy Montoya.

Last week, researchers at Sandia National Laboratories flew a tethered balloon and an unmanned aerial system, colloquially known as a drone, together for the first time to get Arctic atmospheric temperatures with better location control than ever before. In addition to providing more precise data for weather and climate models, being able to effectively operate UASs in the Arctic is important for national security.

"Operating UASs in the remote, harsh environments of the Arctic will provide opportunities to harden the technologies in ways that are directly transferable to the needs of national security in terms of robustness and reliability," said Jon Salton, a Sandia robotics manager. "Ultimately, integrating the specialized operational and sensing needs required for Arctic research will transfer to a variety of national security needs."

Information on temperature of the atmosphere is critical for predicting the weather, monitoring severe weather and improving climate models. Unlike tethered balloons or weather balloons, UASs don't require helium, a nonrenewable resource, and can take off with less preparation.

Thus, they can be launched from more remote locations. Most airports already collect atmospheric temperature profiles twice a day but switching to UASs with distributed temperature sensors would be better because they would be reusable and could fly more frequently, said Sandia atmospheric scientist Dari Dexheimer.

Balloons can fly for hours, UAS can fly to precise locations
Since 2015, Dexheimer has regularly flown tethered balloons out of Sandia's dedicated Arctic airspace on Oliktok Point, the northernmost point of Alaska's Prudhoe Bay. These 13-foot-tall balloons carry distributed temperature sensors to collect Arctic atmospheric temperature profiles, or the temperature of the air at different heights above the ground, among other atmospheric sensors. The test earlier this month was the first time Sandia has flown an octocopter in the sky above Oliktok Point.

"The UAS and the balloon really complement each other in that the UAS has a smaller flight time, but it's much more spatially diverse. The tethered balloon can stay up for a long time, giving you a lot of data, but it's not easily mobile," said Dexheimer. The balloon is blown by the wind, to the limits of the tether, but the UAS can be directed to precise GPS coordinates.

Earlier this summer, Dexheimer and the UAS flight team, led by Diane Callow, tested the joint UAS-balloon setup at Sandia. They overcame a series of technical challenges including figuring out how to best secure and reel out the four-football-field long distributed temperature sensor cable while making sure it doesn't get tangled in the UAS's rotors.

They also worked out the logistics of operating the balloon and the system at the same time. To avoid bumping into each other or tangling the cables, the balloon was tethered downwind and the UAS stayed at least 100 feet away from it.

Cool sensors for cool science
The distributed temperature sensor is an angel hair pasta-thick fiber-optic cable. By seeing how light bends in the cable, Dexheimer can calculate the temperature of that part of the cloud. This measurement has a resolution of 1 meter, and she sends a light pulse every 30 seconds. This gives Dexheimer and climate modelers an unprecedented level of detail on the temperature of the atmosphere.

In addition to the temperature sensor, the tethered balloon carries special supercooled liquid water sensors. Supercooled liquid water is pure water that remains a liquid below its freezing point because it has nothing to crystalize upon. It is important because clouds containing a lot of supercooled liquid water behave differently from normal clouds, sticking around for days and even acting like a blanket to warm the surface below. Better understanding of these kinds of mixed-phase clouds is important for more accurate climate models.

The sensors are vibrating wires upon which supercooled liquid water can freeze. As the ice builds up, the vibration slows, and this tells researchers how much supercooled liquid water is present in that part of the cloud.

For the project's next steps, the team hopes to add these supercooled liquid water sensors to a fixed-wing UAS and fly the UAS into the clouds. They hope to see how much the UAS ices up, determine how to mitigate the effects of icing and eventually collect useful data on cloud conditions with more spatial control than the balloon could get.

Both the cloud temperature and supercooled liquid water content can be compared between the UAS and the balloon as well as with data from ground-based Atmospheric Radiation Measurement sensors also at Oliktok Point. Sandia manages the ARM North Slope of Alaska site as part of the ARM Climate Research Facility, a national scientific user facility funded through the Department of Energy's Office of Science.

"Our ability to run UASs as well as tethered balloon operations in the Arctic, and our ability to combine those measurements and computer modeling in innovative ways, allows us to really put the Oliktok facility to use for the national security and science communities," said Lori Parrott, manager of atmospheric sciences at Sandia.

Sandia is not the only institution using Oliktok Point to test UASs in extreme Arctic conditions; other institutions also fly UAS systems at Oliktok. For example, the University of Alaska Fairbanks' Alaska Center for Unmanned Aircraft Systems Integration flew its UASs at Oliktok Point this summer through a Cooperative Research and Development Agreement with Sandia. They have a testing facility at Toolik Lake about 130 miles south, but access to the restricted airspace Sandia manages over the Beaufort Sea at Oliktok is invaluable, said Parrott.

Discussions are underway with other potential users across multiple federal agencies. Parrott said, "The 700-mile-long restricted airspace that Sandia manages for DOE has strategic importance because it can allow scientists to conduct experiments and exercises over Arctic waters without risk to human-piloted aircraft. Flights for search-and-rescue exercises, data collection on ice or atmospheric conditions, or testing technology, would otherwise be very difficult to conduct."

The project combining UASs and tethered balloons was supported by Sandia internal funding.

UAV NEWS
Iran drone flies close to US carrier in Gulf: Pentagon
Washington (AFP) Aug 14, 2017
An Iranian drone with no lights on flew close to US aircraft operating in the Gulf, US officials said Monday, in what they called an "unsafe and unprofessional" incident. The Sunday night event saw an Iranian QOM-1 drone fly within 1,000 feet (300 meters) of aircraft based on the USS Nimitz aircraft carrier operating in international waters, Navy spokesman Lieutenant Ian McConnaughey said in ... read more

Related Links
Sandia National Laboratories
UAV News - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

UAV NEWS
Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

UAV NEWS
VSS Unity Flies with Propulsion Systems Installed and Live

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

Dragon to be packed with new experiments for International Space Station

UAV NEWS
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

UAV NEWS
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

UAV NEWS
Lockheed Martin invests $350M in state-of-the-art satellite production facility

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Airbus DS to expand cooperation with Russia

UAV NEWS
BAE Systems reveals iMOTR radar system

Machine learning could be key to producing stronger, less corrosive metals

NASA Tests Autopilot Sensors During Simulations

Active machine learning for the discovery and crystallization of gigantic polyoxometalate molecules

UAV NEWS
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Unexpected life found at bottom of High Arctic lakes

UAV NEWS
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Twilight observations reveal huge storm on Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.