. 24/7 Space News .
TIME AND SPACE
Australian physicists revisit spin-bowling puzzle
by Staff Writers
London, UK (SPX) Jul 22, 2016


illustration only

Latest calculations reveal why small variations in the rotation of the ball applied by slow bowlers in cricket can cause batsmen big problems even before deliveries have pitched on the ground

Spin bowlers in cricket are masters at making the ball loop slowly through the air to confuse batsmen. Legends of the game know the magic combinations of top-spin, side-spin and off-spin necessary to fool the opposition, but some clever calculations by physicists in Australia could help to share this knowledge with a wider audience.

Ian and Garry Robinson - Honorary Fellows at Victoria University in Melbourne and the University of New South Wales, respectively - have been busy using mathematics to shine a light on the secrets of spin-bowling. In their latest work, published in the journal Physica Scripta, the brothers highlight the significance of small variations in the proportion of different spin types applied to the ball by slow bowlers in cricket.

To calculate the various flight paths, the scientists consider a number of forces acting on the ball. These include a gravity force, operating vertically downwards; a drag force, which opposes the motion and is in the opposite direction to the ball's velocity vector; and finally, when the ball is spinning, a lift or Magnus force.

Top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways through the air and, perhaps most importantly in cricket, off-spin can cause the ball to drift across the pitch towards the end of the delivery, drawing the batsman into a more vulnerable position.

Once their numerical analysis had confirmed some of the more well-known details of the game, the researchers were ready to examine spin-bowling at a subtler level.

"We found that if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, the length at which the ball pitches can be reduced by as much as 25 cm - an amount that batsmen can ignore at their peril - despite little change being observed in the side-ways drift," revealed Ian Robinson. "On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but can produce 10 cm or more of side-ways drift."

They considered other combinations too. "When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres," highlighted Garry Robinson.

The physicists hope that their analysis will give newcomers to spin-bowling a helping hand in mastering the variety of deliveries necessary to keep batsmen guessing. Tennis players might also benefit from the work (on this theme, also check out - "Radar speed gun true velocity measurements of sports-balls in flight: application to tennis" by Garry Robinson and Ian Robinson 2016 Phys. Scr. 91 023008


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
IOP Publishing
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Unconventional quasiparticles predicted in conventional crystals
Princeton NJ (SPX) Jul 22, 2016
An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles - which belong to the class of particles known as fermions - can be distinguished by several intrinsic properties, such as their responses to applied magnetic and electric fields. In several cases, fermions in the interior of the material show thei ... read more


TIME AND SPACE
Russian and US engineers plan manned moon mission

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

TIME AND SPACE
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

TIME AND SPACE
Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

TIME AND SPACE
China's second space lab Tiangong-2 reaches launch center

China commissions space tracking ship as new station readied

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

TIME AND SPACE
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

TIME AND SPACE
SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

Commission approves acquisition of Arianespace by ASL, subject to conditions

SpaceX propels cargo to space station, lands rocket

TIME AND SPACE
First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

Gemini Observatory Instrumental in Latest Exoplanet Harvest

TIME AND SPACE
NASA Establishes Institute to Explore New Ways to Protect Astronauts

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

Passive Attitude Control For Small Satellites

Active tracking of astronaut rad-exposures targeted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.