Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Atomistic simulations go the distance on metal strength
by Staff Writers
Livermore CA (SPX) Oct 06, 2017


Tantalum crystal can flow like a viscous fluid while remaining a stiff and strong metal and retaining its ordered lattice structure. This snapshot depicts a dense network of lattice defects developing in the flowing crystal. For a larger version of this image please go here.

Lawrence Livermore National Laboratory researchers have dived down to the atomic scale to resolve every "jiggle and wiggle" of atomic motion that underlies metal strength.

In a first of its kind series of computer simulations focused on metal tantalum, the team predicted that, on reaching certain critical conditions of straining, metal plasticity (the ability to change shape under load) meets its limits. One limit is reached when crystal defects known as dislocations are no longer able to relieve mechanical loads, and another mechanism - twinning, or the sudden reorientation of the crystal lattice - is activated and takes over as the dominant mode of dynamic response.

Strength and plasticity properties of a metal are defined by dislocations, line defects in the crystal lattice whose motion causes material slippage along crystal planes.

The theory of crystal dislocation was first advanced in the 1930s, and much research since then has focused on dislocation interactions and their role in metal hardening, in which continued deformation increases the metal's strength (much like a blacksmith pounding on steel with a hammer). The same simulations strongly suggest that the metal cannot be strengthened forever.

"We predict that the crystal can reach an ultimate state in which it flows indefinitely after reaching its maximal strength," said Vasily Bulatov, LLNL lead author of the paper. "Ancient blacksmiths knew this intuitively because the main trick they used to strengthen their metal parts was to repeatedly hammer them from different sides, just like we do in our metal kneading simulation."

Due to severe limits on accessible length and time scales, it was long thought impossible or even unthinkable to use direct atomistic simulations to predict metal strength.

Taking full advantage of LLNL's world-leading HPC facilities through a grant from the Laboratory's Computing Grand Challenge program, the team demonstrated that not only are such simulations possible, but they deliver a wealth of important observations on fundamental mechanisms of dynamic response and quantitative parameters needed to define strength models important to the Stockpile Stewardship Program. Stockpile Stewardship ensures the safety, security and reliability of nuclear weapons without testing.

"We can see the crystal lattice in all details and how it changes through all stages in our metal strength simulations," Bulatov said.

"A trained eye can spot defects and even characterize them to an extent just by looking at the lattice. But one's eye is easily overwhelmed by the emerging complexity of metal microstructure, which prompted us to develop precise methods to reveal crystal defects that, after we apply our techniques, leave only the defects while completely wiping out the remaining defect-less (perfect) crystal lattice.

The research team developed the first fully dynamic atomistic simulations of plastic strength response of single crystal tantalum subjected to high-rate deformation. Unlike computational approaches to strength prediction, atomistic molecular dynamics simulations rely only on an interatomic interaction potential, resolve every "jiggle and wiggle" of atomic motion and reproduce material dynamics in full atomistic detail.

TECH SPACE
Surfactants have surprising effect on nanobubble stability
Washington DC (SPX) Oct 05, 2017
Nanobubbles have recently gained popularity for their unique properties and expansive applications. Their large surface area and high stability in saturated liquids make nanobubbles ideal candidates for food science, medicine and environmental advancements. Nanobubbles also have long lifetimes of hours or days, and greater applicability than traditional macrobubbles, which typically only last fo ... read more

Related Links
Lawrence Livermore National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
OECD calls for tourism to be more sustainable

Fast-moving space industries create new ethical challenges

Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

TECH SPACE
mu Space partners with Blue Origin to launch geostationary satellite

What looks good on paper may look good in space

Demonstrator 3 linear aerospike ready to start tests

ISRO to resume satellite launches by December

TECH SPACE
Lockheed Martin unveils reusable water-powered Mars lander

SpaceX's Musk unveils plan to reach Mars by 2022

Research sheds new light on how Earth and Mars were created

The Mars 2020 Rover features new spectral abilities with its new SuperCam

TECH SPACE
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

TECH SPACE
The ESA 500: fostering start-up companies to use space technology on Earth

Thomas calls for new comprehensive Australian Space Agency at IAC address

AsiaSat 9 Set for Launch from Baikonur on September 29

Australia to create national space agency

TECH SPACE
UV-irradiated amorphous ice behaves like liquid at low temperatures

Teleoperating robots with virtual reality

Surfactants have surprising effect on nanobubble stability

Fast-moving magnetic particles could enable new form of data storage

TECH SPACE
MATISSE to Shed Light on the Formation of Earth and Planets

Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

TECH SPACE
Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement