. 24/7 Space News .
Atmospheric Measuring Device For Understanding Smog Formation

The new device is comparatively small, lightweight, and inexpensive, has low power requirements, and gives a sensitive, fast response.
by Staff Writers
Upton NY (SPX) Nov 20, 2007
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a new tool for quantitatively measuring elusive atmospheric chemicals that play a key role in the formation of photochemical smog. Better measurements will improve scientists' understanding of the mechanisms of smog formation and their ability to select and predict the effectiveness of various mitigation strategies. The Brookhaven scientists have been issued a U.S. patent for their apparatus, which is available for licensing.

The device measures atmospheric hydroperoxyl radicals - short-lived, highly reactive intermediates involved in the formation of ozone, a component of photochemical smog - in the lowest layer of Earth's atmosphere. The levels of these radicals can indicate which of a variety of chemical pathways is predominant in converting basic starting ingredients - hydrocarbons, nitrogen oxides, and water vapor - into smog in the presence of sunlight.

"Understanding the relative importance of the various pathways can help you tailor your mitigation strategies," said Brookhaven atmospheric chemist Stephen Springston, one of the inventors. "For example, are you better off spending your money reducing hydrocarbon emissions or nitrogen oxide emissions?"

"Our measurements will help predict which strategy would be most successful for a particular set of atmospheric conditions - and make modifications to the strategy as those conditions change," said co-inventor Judy Lloyd of the State University of New York at Old Westbury, who holds a guest appointment at Brookhaven Lab.

Because hydroperoxyl radicals are so reactive, getting accurate measurements is not easy. "These chemicals are so fragile you cannot take a bottle home with you," Springston said. "You have to measure them where they form, in the atmosphere, before they react and disappear."

Various groups have developed detectors for hydroperoxyl radicals, but these have been cumbersome and costly. The new device is comparatively small, lightweight, and inexpensive, has low power requirements, and gives a sensitive, fast response. It works by detecting a "glowing" signal from a chemiluminescent compound - similar to the compound that makes fireflies glow - when it reacts with the hydroperoxyl radicals in atmospheric samples fed into the device during flight.

"The chemiluminescence produced in solution creates a strong and readily detectable signal without the need for complex amplification procedures," said Lloyd.

The device has been tested in a mountaintop setting, but has not yet been deployed on an aircraft for a sampling mission. It is designed to be flown on atmospheric sampling aircraft, such as the Department of Energy's Gulfstream 1, which has been used by Brookhaven and other national laboratory scientists for a variety of atmospheric studies.

Community
Email This Article
Comment On This Article

Related Links
Our Polluted World and Cleaning It Up



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


China pollution costs 5.8 pct of GDP: report
Beijing (AFP) Nov 19, 2007
China's pollution woes are costing it about 5.8 percent of GDP each year, much higher than past official Chinese estimates, state press quoted the World Bank as saying Monday.







  • Orbital Outfitters Debuts IS3C - First-Ever Fully Functional Commercial Pressure Spacesuit
  • Europe's comet-chasing probe completes key flyby
  • Boeing Completes Prototype Heat Shield For NASA Orion Spacecraft
  • Russia to stay at Baikonur until 2020

  • Mars Express Creates First Global Map Of Martian Ionosphere
  • Rover Finds Way To Brush Rock Surfaces Despite Setbacks
  • Opportunity's Rock Abrasion Tool Shows Anomalous Behavior
  • Spirit Continues Drive As Power Levels Decline

  • Ground Broken For New Test Launch Pad
  • Sea Launch Resumes Countdown for Thuraya-3 Launch
  • First Soyuz Launch From Kourou Set For 2009
  • Ariane 5 Launches Over Nine Tonne To GEO Transfer Orbit

  • Rosetta: OSIRIS' View Of Earth By Night
  • KAGUYA Captures The Earth Rising Over The Moon
  • Strange Space Weather Over Africa
  • Earth Observation Essential For Geohazard Mitigation

  • Data For The Next Generations
  • Goddard Instrument Makes Cover Of Science
  • Checking Out New Horizons
  • Pluto-Bound New Horizons Sees Changes In Jupiter System

  • Watching Galaxies Grow Old Gracefully
  • Record-busting supernova prompts new ideas on death of stars
  • A Galaxy For Science And Research
  • Cosmological Data Affected By An Unexpected Source Of Radiation In Interstellar Space

  • Scientist In Texas Runs NASA's Lunar Laser Program
  • First China Lunar Probe To Activate Observation Payloads On Monday
  • NASA Tests Lunar Habitat In Extreme Antarctic Environment
  • Japan shoots first high-definition of Earth rising

  • German chancellor says satnav financing plan to be drafted soon
  • Personal Navigation Devices Will Surpass 100 Million Units By 2011
  • V7 Launches New Portable Navigation Devices
  • Magellan Showcases Ultra-Thin Maestro And Magellan Roadmate Auto Navigation Devices

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement