. 24/7 Space News .
EXO WORLDS
Astronomers Confirm Orbital Details of TRAPPIST-1h
by Staff Writers
Pasadena CA (JPL) May 22, 2017


illustration only

Scientists using NASA's Kepler space telescope identified a regular pattern in the orbits of the planets in the TRAPPIST-1 system that confirmed suspected details about the orbit of its outermost and least understood planet, TRAPPIST-1h.

TRAPPIST-1 is only eight percent the mass of our sun, making it a cooler and less luminous star. It's home to seven Earth-size planets, three of which orbit in their star's habitable zone - the range of distances from a star where liquid water could pool on the surface of a rocky planet. The system is located about 40 light-years away in the constellation of Aquarius. The star is estimated to be between 3 billion and 8 billion years old.

Scientists announced that the system has seven Earth-sized planets at a NASA press conference on Feb. 22. NASA's Spitzer Space Telescope, the TRAPPIST (Transiting Planets and Planetesimals Small Telescope) in Chile and other ground-based telescopes were used to detect and characterize the planets. But the collaboration only had an estimate for the period of TRAPPIST-1h.

Astronomers from the University of Washington have used data from the Kepler spacecraft to confirm that TRAPPIST-1h orbits its star every 19 days. At six million miles from its cool dwarf star, TRAPPIST-1h is located beyond the outer edge of the habitable zone, and is likely too cold for life as we know it. The amount of energy (per unit area) planet h receives from its star is comparable to what the dwarf planet Ceres, located in the asteroid belt between Mars and Jupiter, gets from our sun.

"It's incredibly exciting that we're learning more about this planetary system elsewhere, especially about planet h, which we barely had information on until now," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate at Headquarters in Washington. "This finding is a great example of how the scientific community is unleashing the power of complementary data from our different missions to make such fascinating discoveries."

"It really pleased me that TRAPPIST-1h was exactly where our team predicted it to be. It had me worried for a while that we were seeing what we wanted to see - after all, things are almost never exactly what you expect them to be in this field," said Rodrigo Luger, doctoral student at UW in Seattle, and lead author of the study published in the journal Nature Astronomy. "Nature usually surprises us at every turn, but, in this case, theory and observation matched perfectly."

Orbital Resonance - Harmony Among Celestial Bodies
Using the prior Spitzer data, the team recognized a mathematical pattern in the frequency at which each of the six innermost planets orbits their star. This complex but predictable pattern, called an orbital resonance, occurs when planets exert a regular, periodic gravitational tug on each other as they orbit their star.

To understand the concept of resonance, consider Jupiter's moons Io, Europa and Ganymede, which is the farthest out of the three. For every time Ganymede orbits Jupiter, Europa orbits twice and Io makes four trips around the planet. This 1:2:4 resonance is considered stable and if one moon were nudged off course, it would self-correct and lock back into a stable orbit. It is this harmonious influence between the seven TRAPPIST-1 siblings that keeps the system stable.

These relationships, said Luger, suggested that by studying the orbital velocities of its neighboring planets, scientists could predict the exact orbital velocity, and hence also orbital period, of planet h, even before the Kepler observations.

The team calculated six possible resonant periods for planet h that would not disrupt the stability of the system, but only one was not ruled out by additional data. The other five possibilities could have been observed in the Spitzer and ground-based data collected by the TRAPPIST team.

"All of this", Luger said, "indicates that these orbital relationships were forged early in the life of the TRAPPIST-1 system, during the planet formation process."

"The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," said Luger. "This makes the system a great laboratory for planet formation and migration theories."

Worldwide Real-time Collaboration
The Kepler spacecraft stared at the patch of sky home to the TRAPPIST-1 system from Dec. 15, 2016, to March 4, 2017. collecting data on the star's minuscule changes in brightness due to transiting planets as part of its second mission, K2. On March 8, the raw, uncalibrated data was released to the scientific community to begin follow-up studies.

The work to confirm TRAPPIST-1h's orbital period immediately began, and scientists from around the world took to social media to share in real-time the new information gleaned about the star's behavior and its brood of planets. Within two hours of the data release, the team confirmed its prediction of a 19-day orbital period.

"Pulling results out of data is always stimulating, but it was a rare treat to watch scientists across the world collaborate and share their progress in near-real time on social media as they analyzed the data and identified the transits of TRAPPIST-1h," said Jessie Dotson, project scientist for the K2 mission at NASA's Ames Research Center in California's Silicon Valley.

"The creativity and expediency by which the data has been put to use has been a particularly thrilling aspect of K2's community-focused approach."

TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets.

The TRAPPIST-1 system was first discovered in 2016 by the TRAPPIST collaboration, and was thought to have just three planets at that time. Additional planets were found with Spitzer and ground-based telescopes. NASA's Hubble Space Telescope is following up with atmospheric observations, and the James Webb Space Telescope will be able to probe potential atmospheres in further detail.

EXO WORLDS
Scientists propose synestia, a new type of planetary object
Davis CA (SPX) May 22, 2017
There's something new to look for in the heavens, and it's called a "synestia," according to planetary scientists Simon Lock at Harvard University and Sarah Stewart at the University of California, Davis. A synestia, they propose, would be a huge, spinning, donut-shaped mass of hot, vaporized rock, formed as planet-sized objects smash into each other. And at one point early in its history, ... read more

Related Links
TRAPPIST-1
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

NASA Acting Administrator Statement on Fiscal Year 2018 Budget Proposal

EXO WORLDS
Neptune: Neutralizer-free plasma propulsion

Rocket Lab scrubs test launch attempt from Launch Complex 1

Russia to create new Super-Heavy Class rocket after 2025

Spaceflight buys Electron Rocket from Rocket Lab

EXO WORLDS
Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

How hard did it rain on Mars

EXO WORLDS
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

EXO WORLDS
AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

EXO WORLDS
Arralis launches plug and play Ka band chipset

Physicists discover mechanism behind granular capillary effect

HPC4MfG paper manufacturing project yields first results

Unfolding the folding mechanism of ladybug wings

EXO WORLDS
Scientists propose synestia, a new type of planetary object

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Kepler Telescope Spies Details of Trappist-1's Outermost Planet

Astronomers Confirm Orbital Details of TRAPPIST-1h

EXO WORLDS
Hubble spots moon around third largest dwarf planet

NASA asks science community for Europa Lander Instruments ideas

Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.