. 24/7 Space News .
IRON AND ICE
Astronomers Capture Best View Ever of Disintegrating Comet
by Staff Writers
Los Angeles CA (SPX) Sep 19, 2016


Images of comet 332P breaking apart, captured by the Hubble Space Telescope. Image courtesy NASA, ESA and David Jewitt/UCLA.

Astronomers have captured the sharpest, most detailed observations of a comet breaking apart 67 million miles from Earth, using NASA's Hubble Space Telescope.

In a series of images taken over three days in January 2016, Hubble showed 25 fragments consisting of a mixture of ice and dust that are drifting away from the comet at a pace equivalent to the walking speed of an adult, said David Jewitt, a professor in the UCLA departments of Earth, Planetary and Space Sciences; and Physics and Astronomy, who led the research team.

The images suggest that the roughly 4.5-billion-year-old comet, named 332P/Ikeya-Murakami, or Comet 332P, may be spinning so fast that material is ejected from its surface. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental United States.

These observations provide insight into the volatile behavior of comets as they approach the Sun and begin to vaporize, unleashing powerful forces.

"We know that comets sometimes disintegrate, but we don't know much about why or how," Jewitt said.

"The trouble is that it happens quickly and without warning, so we don't have much chance to get useful data. With Hubble's fantastic resolution, not only do we see really tiny, faint bits of the comet, but we can watch them change from day to day. That has allowed us to make the best measurements ever obtained on such an object."

The three-day observations show that the comet shards brighten and dim as icy patches on their surfaces rotate into and out of sunlight. Their shapes change, too, as they break apart. The icy relics comprise about four percent of the parent comet and range in size from roughly 65 feet wide to 200 feet wide. They are separating at only a few miles per hour as they orbit the Sun at more than 50,000 miles per hour.

The Hubble images show that the parent comet changes brightness frequently, completing a rotation every two to four hours. A visitor to the comet would see the Sun rise and set in as little as an hour, Jewitt said.

The comet is much smaller than astronomers thought, measuring only 1,600 feet across, about the length of five football fields.

Comet 332P was discovered in November 2010, after it surged in brightness and was spotted by two Japanese amateur astronomers.

Based on the Hubble data, the research team suggests that sunlight heated the surface of the comet, causing it to expel jets of dust and gas. Because the nucleus is so small, these jets act like rocket engines, spinning up the comet's rotation, Jewitt said. The faster spin rate loosened chunks of material, which are drifting off into space. The research team calculated that the comet probably shed material over a period of months, between October and December 2015.

Jewitt suggests that some of the ejected pieces have themselves fallen to bits in a kind of cascading fragmentation. "We think these little guys have a short lifetime," he said.

Hubble's sharp vision also spied a chunk of material close to the comet, which may be the first salvo of another outburst. The remnant from still another flare-up, which may have occurred in 2012, is also visible. The fragment may be as large as Comet 332P, suggesting the comet split in two. But the remnant wasn't spotted until Dec. 31, 2015, by a telescope in Hawaii.

That discovery prompted Jewitt and colleagues to request Hubble Space Telescope time to study the comet in detail.

"In the past, astronomers thought that comets die when they are warmed by sunlight, causing their ices to simply vaporize away," Jewitt said. "But it's starting to look like fragmentation may be more important. In comet 332P we may be seeing a comet fragmenting itself into oblivion."

The researchers estimate that comet 332P contains enough mass for 25 more outbursts. "If the comet has an episode every six years, the equivalent of one orbit around the Sun, then it will be gone in 150 years," Jewitt said. "It's just the blink of an eye, astronomically speaking. The trip to the inner solar system has doomed it."

The icy visitor hails from the Kuiper belt, a vast swarm of objects at the outskirts of our solar system. As the comet traveled across the system, it was deflected by the planets, like a ball bouncing around in a pinball machine, until Jupiter's gravity set its current orbit, Jewitt said.

The discovery is published online in Astrophysical Journal Letters


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University Of California
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
Rosetta's descent towards region of active pits
Paris (ESA) Sep 12, 2016
Squeezing out unique scientific observations until the very end, Rosetta's thrilling mission will culminate with a descent on 30 September towards a region of active pits on the comet's 'head'. The region, known as Ma'at, lies on the smaller of the two lobes of Comet 67P/Churyumov-Gerasimenko. It is home to several active pits more than 100 m in diameter and 50-60 m in depth - where a numb ... read more


IRON AND ICE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

IRON AND ICE
Mars hosted lakes, snowmelt-fed streams much later than previously thought

Opportunity departs Marathon Valley to head deeper into Endeavour Crater

Mars Rover Views Spectacular Layered Rock Formations

Storm Reduces Available Solar Energy on Opportunity

IRON AND ICE
Pentagon push to tap tech talent in 'weird' Texas city

Astronaut returns home after logging record-breaking 534 days in space

'Star Trek' 50-year mission: to show the best of humanity

Vietnam's 'Silicon Valley' sparks startup boom

IRON AND ICE
China to launch second space laboratory: Xinhua

No Storm for Tiangong 2

China eyes year-long stays for space station astronauts

China to launch new generation of quick-response rocket in 2017

IRON AND ICE
Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

IRON AND ICE
Russia postpones Soyuz MS-02 ISS launch due to electrical glitch

Virgin Galactic signs Sky and Space Global as LauncherOne customer

Atlas V WorldView-4 Satellite Mission Launch Postponed Second Time

A quartet of Galileo satellites is prepared for launch on Ariane 5

IRON AND ICE
ALMA locates possible birth site of icy giant planet

New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

Could Proxima Centauri b Really Be Habitable

IRON AND ICE
New material with exceptional negative compressibility

Towards the workplace of the future - with virtual reality

Deriving inspiration from the dragon tree

Developing composites that self-heal at very low temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.