Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Astronomers Anticipate 100 Billion Earth-Like Planets
by Staff Writers
Auckland, New Zealand (SPX) Apr 04, 2013


In recent years, microlensing has been used to detect several planets as large as Neptune and Jupiter.

Researchers at The University of Auckland have proposed a new method for finding Earth-like planets, and they anticipate that the number will be in the order of 100 billion.

The strategy uses a technique called gravitational microlensing, currently used by a Japan-New Zealand collaboration called MOA (Microlensing Observations in Astrophysics) at New Zealand's Mt. John Observatory. Their work will appear in the Oxford University Press journal Monthly Notices of the Royal Astronomical Society.

Lead author Dr. Phil Yock from the University of Auckland's Department of Physics explains that the work will require a combination of data from microlensing and the NASA Kepler space telescope.

"Kepler finds Earth-sized planets that are quite close to parent stars, and it estimates that there are 17 billion such planets in the Milky Way. These planets are generally hotter than Earth, although some could be of a similar temperature (and therefore habitable) if they're orbiting a cool star called a red dwarf."

"Our proposal is to measure the number of Earth-mass planets orbiting stars at distances typically twice the Sun-Earth distance. Our planets will therefore be cooler than the Earth. By interpolating between the Kepler and MOA results, we should get a good estimate of the number of Earth-like, habitable planets in the galaxy. We anticipate a number in the order of 100 billion."

"Of course, it will be a long way from measuring this number to actually finding inhabited planets, but it will be a step along the way."

The first planet orbiting a Sun-like star was not found until 1995, despite strenuous efforts by astronomers. Dr. Yock explains that this reflects the difficulty of detecting from a distance a tiny non-luminous object like Earth orbiting a bright object like the Sun. The planet is lost in the glare of the star, so indirect methods of detection must be used.

Whereas Kepler measures the loss of light from a star when a planet orbits between us and the star, microlensing measures the deflection of light from a distant star that passes through a planetary system en route to Earth - an effect predicted by Einstein in 1936.

In recent years, microlensing has been used to detect several planets as large as Neptune and Jupiter. Dr. Yock and colleagues have proposed a new microlensing strategy for detecting the tiny deflection caused by an Earth-sized planet. Simulations carried out by Dr. Yock and his colleagues - students and former students from The University of Auckland and France - showed that Earth-sized planets could be detected more easily if a worldwide network of moderate-sized, robotic telescopes was available to monitor them.

Coincidentally, just such a network of 1-m and 2-m telescopes is now being deployed by Las Cumbres Observatory Global Telescope Network (LCOGT) in collaboration with SUPA/St. Andrews (Scottish Universities Physics Alliance), with three telescopes in Chile, three in South Africa, three in Australia, and one each in Hawaii and Texas. This network is used to study microlensing events in conjunction with the Liverpool Telescope in the Canary Islands, which is owned and operated by Liverpool John Moores University.

It is expected that the data from this suite of telescopes will be supplemented by measurements using the existing 1.8-m MOA telescope at Mt. John, the 1.3-m Polish telescope in Chile known as OGLE, and the recently opened 1.3-m Harlingten telescope in Tasmania.

.


Related Links
University of Auckland
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
The Great Exoplanet Debate Part Four
Moffett Field CA (SPX) Apr 02, 2013
At the 2012 Astrobiology Science Conference, Astrobiology Magazine hosted a plenary session titled: "Expanding the Habitable Zone: The Hunt for Exoplanets Now and Into the Future." Originally formulated as part of our "Great Debate" series, this panel of exoplanet hunters and thinkers held a lively discussion about some of the most important issues facing the search for and understanding ... read more


EXO WORLDS
Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Ultraviolet spectrograph observes mercury and hydrogen in GRAIL impact plumes

NASA's LRO Sees GRAIL's Explosive Farewell

EXO WORLDS
Used Parachute on Mars Flaps in the Wind

BusinessCom Networks Connects Mars 2013

SwRI study finds liquid water flowing above and below frozen Alaskan sand dunes, hints of a wetter Mars

Opportunity Moves Into Place for Quiet Period of Operations

EXO WORLDS
India doing excellent in space programmes: Sunita Williams

Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

EXO WORLDS
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

EXO WORLDS
Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

Soyuz Docks At Space Station Four Orbits After Launch

Three astronauts blast off on express ride to ISS

EXO WORLDS
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

EXO WORLDS
The Great Exoplanet Debate Part Four

Astronomers Anticipate 100 Billion Earth-Like Planets

The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

EXO WORLDS
Michigan Tech researcher slashes optics laboratory costs

CO2 could produce valuable chemical cheaply

Catalyst in a teacup: New approach to chemical reduction

Lasers could yield particle research tool




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement