. 24/7 Space News .
TIME AND SPACE
Artificial intelligence techniques reconstruct mysteries of quantum systems
by Staff Writers
New York NY (SPX) Mar 06, 2018

A new technique feeds experimental measurements of a quantum system to an artificial neural network. The network learns over time and attempts to impersonate the quantum system's behavior. With enough data, scientists can fully reconstruct the quantum system.

The same techniques used to train self-driving cars and chess-playing computers are now helping physicists explore the complexities of the quantum world.

For the first time, physicists have demonstrated that machine learning can reconstruct a quantum system based on relatively few experimental measurements. This method will allow scientists to thoroughly probe systems of particles exponentially faster than conventional, brute-force techniques. Complex systems that would require thousands of years to reconstruct with previous methods could be wholly analyzed in a matter of hours.

The research will benefit the development of quantum computers and other applications of quantum mechanics, the researchers report February 26 in Nature Physics.

"We have shown that machine intelligence can capture the essence of a quantum system in a compact way," says study co-author Giuseppe Carleo, an associate research scientist at the Center for Computational Quantum Physics at the Flatiron Institute in New York City. "We can now effectively extend the capabilities of experiments."

Carleo, who conducted the research while a lecturer at ETH Zurich, was inspired by AlphaGo. This computer program used machine learning to outplay the world champion of the Chinese board game Go in 2016. "AlphaGo was really impressive," he says, "so we started asking ourselves how we could use those ideas in quantum physics."

Systems of particles such as electrons can exist in lots of different configurations, each with a particular probability of occurring. Each electron, for instance, can have either an upward or downward spin, similar to Schrodinger's cat being either dead or alive in the famous thought experiment. In the quantum realm, unobserved systems don't exist as any one of these arrangements. Instead, the system may be thought of as being is in all possible configurations simultaneously.

When measured, the system collapses into one configuration, just like Schrodinger's cat is either dead or alive once you open its box. This quirk of quantum mechanics means that you can never observe the entire complexity of a system in a single experiment. Instead, experimentalists conduct the same measurements over and over until they can determine the state of the whole system.

That method works well for simple systems containing only a few particles. But "things get nasty with a lot of particles," Carleo says. As the number of particles increases, the complexity skyrockets. If only considering that each electron can have either spin up or down, a system of five electrons has 32 possible configurations. A system of 100 electrons has more than 1 million trillion trillion.

The entanglement of particles further complicates matters. Through quantum entanglement, independent particles become intertwined and can no longer be treated as purely separate entities even when physically separated. This entanglement alters the probability of different configurations.

Conventional methods, therefore, just aren't feasible for complex quantum systems.

Giacomo Torlai of the University of Waterloo and the Perimeter Institute in Canada, Carleo and colleagues circumvented these limitations by tapping machine learning techniques. The researchers fed experimental measurements of a quantum system to a software tool based on artificial neural networks. The software learns over time and attempts to mimic the system's behavior. Once the software ingests enough data, it can accurately reconstruct the complete quantum system.

The researchers tested the software using mock experimental datasets based on different sample quantum systems. In these tests, the software far surpassed conventional methods. For eight electrons, each with spin up or down, the software could accurately reconstruct the system with only around 100 measurements. For comparison, a conventional brute-force method required almost 1 million measurements to reach the same level of accuracy. The new technique can also handle much larger systems. In turn, this ability can help scientists validate that a quantum computer is correctly set up and that any quantum software would run as intended, the researchers suggest.

Capturing the essence of complex quantum systems with compact artificial neural networks has other far-reaching consequences. Center for Computational Quantum Physics co-director Andrew Millis notes that the ideas provide an important new approach to the center's ongoing development of novel methods for understanding the behavior of interacting quantum systems, and connect with work on other quantum physics-inspired machine learning approaches.

Besides applications to fundamental research, Carleo says that the lessons the team learned as they blended machine learning with ideas from quantum physics could improve general-purpose applications of artificial intelligence as well. "We could use the methods we developed here in other contexts," he says. "Someday we might have a self-driving car inspired by quantum mechanics, who knows."

Research paper


Related Links
Simons Foundation
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Three-dimensional skyrmion: Scientists observe theoretical particle for first time
Washington (UPI) Mar 2, 2018
Forty years after scientists first theoretically predicted the existence of a three-dimensional skyrmion, scientists have observed the particle in the lab. The particle, observed cold quantum gas, isn't a normal particle composed of electrons, protons and electrons. It is a quantum particle, the energy signature created by the interactions between a particle and the surrounding system. In this instance, the quantum particle is a tangled knot of magnetic moments in the quantum gas. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Russia, China strike deal to jointly explore outer space

Astronaut Scott Kelly weighs in on the 'State of Science'

Knowledge matters for Year of Education on Station

NASA, partners seek input on standards for deep space technologies

TIME AND SPACE
Ukraine eyes new Spaceport downunder

Arianespace lofts 4 more O3b sats for SES led constellation

SpaceX carries out 50th launch of Falcon 9 rocket

NASA team outfits Orion for abort test with lean approach

TIME AND SPACE
The Case of the Martian Boulder Piles

Opportunity collects more 'Selfie' frames

Dyes for 'live' extremophile labeling will help discover life on Mars

Mars Express views moons set against Saturn's rings

TIME AND SPACE
China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

Satellite will test plan for global China led satcom network

China plans rocket sea-launch

TIME AND SPACE
Britain hopes to keep stars aligned with EU's space projects

Lockheed Martin Begins Assembly of JCSAT-17 Commercial Communications Satellite

ESA Astronaut will test CIMON aboard the ISS Watson AI

Iridium Certus readies for takeoff with aviation service providers

TIME AND SPACE
Russia successfully tests first atmospheric satellite

Commercial Satellite Built by Maxar Technologies' SSL Successfully Begins On-Orbit Operations, Demonstrating Leadership in New Space Economy

Lockheed Martin delivers first of 3 radars to Latvian military

Researchers use 'flying focus' to better control lasers over long distances

TIME AND SPACE
Heat shock system helps bug come back to life after drying up

Rare mineral discovered in plants for first time

Hubble observes exoplanet atmosphere in more detail than ever before

Chemical sleuthing unravels possible path to forming life's building blocks in space

TIME AND SPACE
Jupiter's turmoil more than skin deep: researchers

Jupiter's Jet-Streams Are Unearthly

You are entering the Jovian Twilight Zone

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.