. 24/7 Space News .
TIME AND SPACE
Argonne theorists solve a long-standing fundamental problem
by Staff Writers
Lemont IL (SPX) Sep 01, 2016


Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds of systems, scientists use two fundamentally different pictures of reality, one of which is called "statistical" and the other "dynamical." The two approaches have at times been at odds, but scientists from Argonne recently announced a way to reconcile the two pictures. Image courtesy Argonne National Laboratory. For a larger version of this image please go here.

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds of systems, scientists use two fundamentally different pictures of reality, one of which is called "statistical" and the other "dynamical."

The two approaches have at times been at odds, but scientists from the U.S. Department of Energy's Argonne National Laboratory announced a way to reconcile the two pictures.

In the statistical approach, which scientists call statistical mechanics, a given system realizes all of its possible states, which means that the atoms explore every possible location and velocity for a given value of either energy or temperature. In statistical mechanics, scientists are not concerned with the order in which the states happen and are not concerned with how long they take to occur. Time is not a player.

In contrast, the dynamical approach provides a detailed account of how and to what degree these states are explored over time. In dynamics, a system may not experience all of the states that are in principle available to it, because the energy may not be high enough to surmount the energy barriers or because of the time window being too short. "When a system cannot 'see' states beyond an energy barrier in dynamics, it's like a hiker being unable to see the next valley behind a mountain range," said Argonne theorist Julius Jellinek.

When choosing one approach over the other, scientists are forced to take a conceptual fork in the road, because the two approaches do not always agree. Under certain conditions - for example, at sufficiently high energies and long time scales - the statistical and the dynamical portraits of the physical world do in fact sync up. However, in many other cases statistical mechanics and dynamics yield pictures that differ markedly.

"When the two approaches disagree, the correct choice is dynamics because the states actually experienced by a system may depend on the energy, the initial state and on the window of time for observation or measurement," Jellinek said. However, not having the statistical picture is "kind of a loss," he added, because of the power of its tools and concepts to analyze and characterize the properties and behavior of systems.

The fundamental characteristic that lies at the foundation of all statistical mechanics is the "density of states," which is the total number of states a system can assume at a given energy. Knowledge of the density of states allows researchers to establish additional physical properties such as entropy, free energy and others, which form the powerful arsenal of statistical mechanical analysis and characterization tools. The accuracy of all these, however, hinges on the accuracy of the density of states.

The problem is that when it comes to the vibrational motion of systems, scientists had an exact solution for the density of states for only two idealized cases, which are sets of so-called harmonic or Morse oscillators. Though real systems are neither of the two, the ubiquitous practice was to use the harmonic approximation, which hinges on the assumption that real systems behave not too differently from harmonic ones.

This assumption is not bad at low energies, but it becomes inadequate as the energy is increased. Considerable effort has been invested over the last eight decades into attempts to provide a solution for systems that do not behave harmonically, Jellinek said, and until now, the result has been a multitude of approximate solutions, which are all limited to only weak departures from harmonicity or suffer from other limitations. A general and exact solution for vibrational density of states for systems with any degree of anharmonicity remained an unsolved problem.

In a major recent development, Jellinek, in collaboration with Darya Aleinikava, then an Argonne postdoc and now an assistant professor at Benedictine University, provided the missing solution. The methodology they formulated furnishes a general and exact solution for any system at any energy.

"This long-standing fundamental problem is finally solved," said Jellinek. "The solution will benefit many areas of physics, chemistry, materials science, nanoscience and biology."

The solution provided solves yet another problem - it reconciles the statistical and dynamical pictures of the world for even those conditions in which they previously may have disagreed.

Since the solution is based on following the actual dynamics of a system at relevant energies and time scales, the resulting densities of states are fully dynamically informed and may be sensitive to time. As such, these densities of states lay the foundation for formulation of new statistical mechanical frameworks that incorporate time and reflect the actual dynamical behavior of systems.

"This leads to a profound change in our view of the relationship between statistical mechanics and dynamics," said Jellinek. "It brings statistical mechanics into harmony with the dynamics irrespective of how specific or peculiar the dynamical behavior of a system may be."

A paper based on the research, "Anharmonic densities of states: A general dynamics-based solution," was published in the June 2 edition of The Journal of Chemical Physics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Argonne National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Simple equation predicts force needed to push objects through sand
Boston MA (SPX) Sep 01, 2016
For those of you who take sandcastle building very seriously, listen up: MIT engineers now say you can trust a very simple equation to calculate the force required to push a shovel - and any other "intruder"-- through sand. The team also found that the same concept, known as the resistive force theory, can generate useful equations for cohesive materials like muds. Aside from calculating t ... read more


TIME AND SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TIME AND SPACE
Test for damp ground at Mars' seasonal streaks finds none

NASA Awards Launch Services Contract for Mars 2020 Rover Mission

Year-long simulation of humans living on Mars ends in Hawaii

Boredom was hardest part of yearlong dome isolation

TIME AND SPACE
At Berlin tech fair, waterproof gadgets make a splash

Grandpa astronaut breaks US space record

35 years later Voyager's legacy continues at Saturn

Chinese sci-fi prepares to master the universe

TIME AND SPACE
China Sends Country's Largest Carrier Rocket to Launch Base

'Heavenly Palace': China to Launch Two Manned Space Missions This Fall

China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

TIME AND SPACE
Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

TIME AND SPACE
With operational acceptance complete, Western Range is ready for launch

Russia to Build New Launch Pad for Angara Rockets by 2019

Galileo's Ariane 5 arrives at Europe's Spaceport

SpaceX to launch satellite by reusing rocket

TIME AND SPACE
Rocky planet found orbiting habitable zone of nearest star

A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

TIME AND SPACE
Berlin's IFA fair dons virtual reality headsets

Shrinking the inside of an explosion

New optical material offers unprecedented control of light and thermal radiation

'Materials that compute' advances as Pitt engineers demonstrate pattern recognition









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.