. 24/7 Space News .
EARLY EARTH
Appendages Help Microbes Survive Harsh Conditions
by Charles Q. Choi for Astrobiology Magazine
Moffett Field CA (SPX) Apr 07, 2016


A bacterium using type IV pili to walk on a surface. Image courtesy Gerard Wong, UCLA Bioengineering, CNSI.

The most ancient kinds of microbes on Earth often have a special filament lining their surfaces. Scientists are discovering that these structures can play a variety of roles in helping microorganisms survive the most hostile environments on Earth, findings that could shed light on how alien life might withstand extreme conditions on distant worlds.

The most complex forms of life on Earth nowadays are eukaryotes, organisms whose cells possess nuclei. However, the first life on Earth were prokaryotes, single-celled microorganisms that do not have nuclei. There are two kinds of prokaryotes - the familiar bacteria, and the archaea, many of which thrive in harsh environments such as hot springs, salt lakes, underground petroleum deposits and deep-sea hydrothermal vents.

Scientists have discovered a number of prokaryotes that could potentially withstand many of the same extreme conditions found on Mars and other distant planets. A better understanding of how bacteria and archaea survive these dangerous habitats might yield insights into the adaptations that could make life on other worlds possible, said Mechthild Pohlschroder, a microbiologist at the University of Pennsylvania in Philadelphia.

Pohlschroder and her colleague Rianne Esquivel detailed their research in the March 2015 issue of the journal Frontiers in Microbiology. Their research was supported by a grant from the Exobiology and Evolutionary Biology element of the NASA Astrobiology Program.

A class of protein structures known as type IV pili (T4P) are filaments found on the cell surfaces of species in nearly all known major groups of prokaryotes. This prevalence suggests that these appendages are extremely ancient in origin, Pohlschroder said.

"Because these appendages are found on many archaeal and bacterial species, spanning a broad array of organisms in both prokaryotic domains of life, it's likely that they had important roles to play in the common ancestor of the bacteria and the archaea " Pohlschroder said.

Indeed, these structures might have played a major role in the survival of these microbes, helping them flourish for millions of years, she added.

T4P are filaments composed of small proteins known as pilins that link together to form helical fibers. Pilins all contain short segments called signal peptides that help the pilins get incorporated into T4P. Although pilins can differ greatly across species, their signal peptides are structurally similar to each other, indicating common origins, Pohlschroder noted.

Although T4P are often relatively simple structures, researchers are discovering that bacteria and archaea have adapted T4P to play an extraordinarily diverse set of roles. "Amazingly, although many cell appendages are adapted, to an extent, to efficiently perform a single function, T4P are quite versatile, and can, depending on local conditions, serve many and varied functions," Pohlschroder said.

One key role T4P plays involves adhesion. Sticking onto surfaces can help prokaryotes either colonize fertile new habitats or cluster together in slimy fortresses known as biofilms to withstand potentially lethal hazards such as ultraviolet radiation, desiccation, antibiotics and toxins, Pohlschroder said.

In addition to adhesion, many T4P have evolved to carry out additional functions, such as movement. For example, in many archaea, a kind of T4P sometimes known as archaellum or archaeal flagellum, can rotate like propellers and help the microbes swim through the water. Moreover, in some bacteria, T4P can also retract, allowing a twitching form of locomotion.

T4P can also help microbes grab items. For example, in the archaea Sulfolobus, T4P possess proteins that help them snag sugar for food, while in the bacterium Bacillus subtilis, a kind of T4P known as pseudopili help the microbes glom onto DNA, which the microorganism can then use to repair genetic damage from radiation or toxins, or even use to change its own genome.

Different kinds of pseudopili in bacteria can help the microbes secrete proteins. For instance, the cholera bacterium uses T4P to release a compound that helps it colonize human intestines. Some bacteria may even use electrically conductive T4P to get rid of electrons generated as waste as the microorganisms synthesize vital molecules.

"A highly diverse assortment of single-cell organisms produce T4P, including many organisms that inhabit highly variable and extreme environments," Pohlschroder said.

"Therefore, it is not surprising that these cellular appendages have evolved along diverse and varied paths to support processes that allow organisms to thrive under a wide variety of extreme conditions, including conditions similar to those that are found in some extraterrestrial environments, such as the highly salty fluids on Mars."

Researchers have found that the functions of T4P depend on small, precise modifications of pilins. Prokaryotes are capable of quickly modifying the pilins they synthesize, "allowing cells to make rapid transitions between living as a free-swimming cell or living within the constraints of a protective biofilm structure, depending on local environmental conditions," Pohlschroder said.

Future research can focus on T4P proteins that help microbes adhere to surfaces or swim through fluid, which could help scientists better understand how these appendages help microorganisms respond to stress, Pohlschroder said.

"We will also attempt to determine the specific roles T4P of specific compositions play in various cell processes, especially with regard to the pili that aid in responding to changes in such things as salt concentration or nutrient conditions."

Pohlschroder and her colleague Rianne Esquivel detailed their research in the March 2015 issue of the journal Frontiers in Microbiology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Fossil discovery suggests size poor predictor of maturity in ancient reptiles
Blacksburg VA (SPX) Apr 06, 2016
Paleontologists at Virginia Tech have found that muscle-scarred fossil leg bones of one of the closest cousins of dinosaurs that lived approximately 240 million years ago can shine new light on a large unknown: How early dinosaurs grew from hatchlings to adults. Published this month in the Journal of Vertebrate Paleontology, the findings are surprising: dinosaurs and their close relatives ... read more


EARLY EARTH
Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

Ancient Polar Ice Reveals Tilting of Earth's Moon

EARLY EARTH
Opportunity moves to new locations to the southwest

NASA: Manned mission to Mars still 'long way' off

Mars Express keeps watch on frosty Martian valleys

HiRISE: 45,000 Mars Orbits and Counting

EARLY EARTH
New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

Space-Related Budget Requests for FY17

NASA Selects American Small Business, Research Institution Projects for Continued Development

EARLY EARTH
China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

EARLY EARTH
Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

EARLY EARTH
Roscosmos Says Reports on Sea Launch Project Sale Might Be True

India to launch 22 satellites by single rocket in May

NASA's 'Spaceport of the Future' Reaches Another Milestone

MHI signs H-IIA launch deal for UAE Mars mission

EARLY EARTH
Map of rocky exoplanet reveals a lava world

Instrument Team Selected to Build Next-Gen Planet Hunter

Oddball planet raises questions about origins of 'hot Jupiters'

Investigating the Mystery of Migrating 'Hot Jupiters'

EARLY EARTH
New understanding of liquid to solid state transition discovered

Physicists 'undiscovered' technetium carbide

Drexel rolls out method for making the invisible brushes that repel dirt

New state of matter detected in a two-dimensional material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.