. 24/7 Space News .
TECH SPACE
Antimatter helps to unveil the secrets of liquid crystals
by Staff Writers
Krakow, Poland (SPX) Apr 26, 2016


Liquid-crystal SMEs have a different structure than previously expected, as shown by measurements using antimatter particles conducted at the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow. On the left is the current model of Sm-E, and on the right is the new model, with a distinct gap between the layers, large enough to be able to accommodate positronium. Image courtesy IFJ PAN. For a larger version of this image please go here.

The chaos typical of liquid molecules, and the ordering characteristics of crystals. There are states of matter connecting such contradictory features: liquid crystals. Thanks to an innovative application of antimatter, it has been demonstrated at the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow that the structures formed by certain molecules of liquid crystals must in fact be different than previously thought.

Liquid crystals are found in many areas of technology, and in future, their use will likely grow, for example, as organic semiconductors. But to make this possible, we still need to conduct basic research using a variety of experimental techniques in order to reveal the structure of these compounds and their dynamics.

To this end, new experiments have been conducted on the quenched smectic-E (Sm-E) phase of liquid crystals at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Krakow. Smectics of this type are composed of well-ordered particles separated into layers.

Up until now it was thought that the distance between the individual layers of particles was very small. Research conducted by the Krakow physicists helped to verify the correctness of current models and precisely determine the crystal-like phase structure.

"We have employed an interesting measurement technique rarely used in the case of liquid crystals. The method uses the specific characteristics of positrons, which are antimatter counterparts of ordinary electrons," explains Dr. Ewa Dryzek (IFJ PAN).

A positron as the antiparticle of an electron has a positive charge. When a positron meets an electron it may lead to annihilation, where the mass of both particles converts into electromagnetic radiation with a characteristic energy.

"In the world of ordinary matter, antimatter is produced by physical processes only in trace amounts. In the course of our measurements we used positrons created in radioactive decay of the isotope sodium 22," says Dr. Ewa Juszynska-Galazka (IFJ PAN).

Positrons of a radioactive source penetrated the test material, in which they encountered electrons. Before the annihilation of a positron and an electron pair, an exotic atom called positronium can form. In soft matter such as liquid crystals or polymers positronium may be formed in nanopores, which are small voids between molecules.

Measuring its lifetime, that is, the time between the emission of a positron from a radioactive source and its annihilation, allows us to determine the size of the nanopores. The smaller the nanopores, the faster the annihilation occurs.

Research at IFJ PAN (made possible thanks to previous cooperation, among other endeavours, with Dr. Bozena Jasinska's group from the Institute of Physics of the University of Maria Curie-Sklodowska University in Lublin) concerned positron irradiation of a compound called 4TCB, which unlike many other substances does not crystallize with a decrease in temperature, but with an increase. The results showed that in the material positronium is formed. However, given the existing model arrangement of molecules in the Sm-E phase, it was difficult to identify the place where it could be accommodated.

"Our measurements show that positronium's nanopores are the size of approximately six angstroms, that is, six 10-billionths of a meter. These results were consistent with one of the variants of the new model of Sm-E, which only recently has been proposed by Prof. Kazuya Saito's group from Japan," says Dr. Dryzek.

Measurements have confirmed that the alkyl chains - 'tail' of molecules - are in a liquid state, and so have freedom of movement like in an isotropic liquid. It is worth mentioning that in liquids, as a result of interaction with the surrounding molecules, the positronium repulses the neighbouring molecules or their parts to produce a small empty space around itself. Such an arrangement can be imagined as a bubble with positronium in its center.

The Japanese Sm-E model, proposed on the basis of calorimetric tests and the diffraction, assumed that the liquid crystal molecules are arranged in two layers: the first comprised of rigid phenyl rings, the other of alkyl chains.

"At this point all the information began to fit together! Positronium can produce a bubble in the layer containing the alkyl tails, as they are in the liquid state. The size of the resulting bubble corresponds to the width of the layer," says Dr. Dryzek.

Temperature measurements of the positronium lifetime confirmed that at low temperatures (liquid nitrogen) quenched 4TCB creates glass, wherein the positronium cannot form. The movements of the alkyl tails are frozen and positronium cannot produce a bubble. With an increase in temperature the glass softens, which can be described as the formation of liquid-like domains. It is in these domains that positronium begins to form.

Positron annihilation spectroscopy is used in the material testing of metals, semiconductors and polymers. The results of IFJ PAN prove that skilfully applied, this method can be a source of intriguing and detailed information about the structure of liquid crystals.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Nuclear Physics Polish Academy of Sciences
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Liquid spiral vortex discovered
Onna, Japan (SPX) Apr 26, 2016
In many plumbing and pipework systems in general, there are junctions and connections to move liquids such as water in different directions, but have you ever thought about what happens to the water in those fluid intersections? A team of researchers from Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators found an unexpected spiral vortex phenomenon that occ ... read more


TECH SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECH SPACE
Mars' surface revealed in unprecedented detail

NASA rocket fuel pump tests pave way for methane-fueled Mars lander

Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

TECH SPACE
Tech industry titans urge US to better fund science ed

When technology bites back

Menstruation in spaceflight: Options for astronauts

Space Subcommittee examines commercial challenges

TECH SPACE
China can meet Chile's satellite needs: ambassador

South China city gears up for satellite tourism

China targets 2020 Mars mission launch: official

China testing own reusable rocket technologies

TECH SPACE
15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

BEAM successfully installed to the International Space Station

TECH SPACE
New small launch vehicles

Russia May Launch Upgraded Proton-M Rocket on May28

SpaceX vows to send capsule to Mars by 2018

Soyuz demonstrates Arianespace mission flexibility

TECH SPACE
Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

TECH SPACE
Nano-magnets produce 3-dimensional images

Liquid spiral vortex discovered

New material combines useful, typically incompatible properties

Model makes designing new antennas orders of magnitude faster









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.