Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



IRON AND ICE
Ancient, massive asteroid impact could explain Martian geological mysteries
by Staff Writers
Boulder CO (SPX) Jul 20, 2017


illustration only

The origin and nature of Mars is mysterious. It has geologically distinct hemispheres, with smooth lowlands in the north and cratered, high-elevation terrain in the south. The red planet also has two small oddly-shaped oblong moons and a composition that sets it apart from that of the Earth.

New research by University of Colorado Boulder professor Stephen Mojzsis outlines a likely cause for these mysterious features of Mars: a colossal impact with a large asteroid early in the planet's history. This asteroid - about the size of Ceres, one of the largest asteroids in the Solar System - smashed into Mars, ripped off a chunk of the northern hemisphere and left behind a legacy of metallic elements in the planet's interior. The crash also created a ring of rocky debris around Mars that may have later clumped together to form its moons, Phobos and Deimos.

The study appeared online in the journal Geophysical Research Letters, a publication of the American Geophysical Union, in June.

"We showed in this paper - that from dynamics and from geochemistry - that we could explain these three unique features of Mars," said Mojzsis, a professor in CU Boulder's Department of Geological Sciences. "This solution is elegant, in the sense that it solves three interesting and outstanding problems about how Mars came to be."

Astronomers have long wondered about these features. Over 30 years ago, scientists proposed a large asteroid impact to explain the disparate elevations of Mars' northern and southern hemispheres; the theory became known as the "single impact hypothesis." Other scientists have suggested that erosion, plate tectonics or ancient oceans could have sculpted the distinct landscapes. Support for the single impact hypothesis has grown in recent years, supported by computer simulations of giant impacts.

Mojzsis thought that by studying Mars' metallic element inventory, he might be able to better understand its mysteries. He teamed up with Ramon Brasser, an astronomer at the Earth-Life Science Institute at the Tokyo Institute of Technology in Japan, to dig in.

The team studied samples from Martian meteorites and realized that an overabundance of rare metals - such as platinum, osmium and iridium - in the planet's mantle required an explanation. Such elements are normally captured in the metallic cores of rocky worlds, and their existence hinted that Mars had been pelted by asteroids throughout its early history. By modeling how a large object such as an asteroid would have left behind such elements, Mojzsis and Brasser explored the likelihood that a colossal impact could account for this metal inventory.

The two scientists first estimated the amount of these elements from Martian meteorites, and deduced that the metals account for about 0.8 percent of Mars' mass. Then, they used impact simulations with different-sized asteroids striking Mars to see which size asteroid accumulated the metals at the rate they expected in the early solar system.

Based on their analysis, Mars' metals are best explained by a massive meteorite collision about 4.43 billion years ago, followed by a long history of smaller impacts. In their computer simulations, an impact by an asteroid at least 1,200 kilometers (745 miles) across was needed to deposit enough of the elements. An impact of this size also could have wildly changed the crust of Mars, creating its distinctive hemispheres.

In fact, Mojzsis said, the crust of the northern hemisphere appears to be somewhat younger than the ancient southern highlands, which would agree with their findings.

"The surprising part is how well it fit into our understanding of the dynamics of planet formation," said Mojzsis, referring to the theoretical impact. "Such a large impact event elegantly fits in to what we understand from that formative time."

Such an impact would also be expected to have generated a ring of material around Mars that later coalesced into Phobos and Deimos; this explains in part why those moons are made of a mix of native and non-Martian material.

In the future, Mojzsis will use CU Boulder's collection of Martian meteorites to further understand Mars' mineralogy and what it can tell us about a possible asteroid impact. Such an impact should have initially created patchy clumps of asteroid material and native Martian rock. Over time, the two material reservoirs became mixed. By looking at meteorites of different ages, Mojzsis can see if there's further evidence for this mixing pattern and, therefore, potentially provide further support for a primordial collision.

"Good theories make predictions," said Mojzsis, referring to how the impact theory may predict how Mars' makeup. By studying meteorites from Mars and linking them with planet-formation models, he hopes to better our understanding of how massive, ancient asteroids radically changed the red planet in its earliest days.

Research paper

IRON AND ICE
Are asteroids humanity's 'greatest challenge'?
Paris (AFP) June 28, 2017
Throughout its 4.5-billion-year history, Earth has been repeatedly pummelled by space rocks that have caused anything from an innocuous splash in the ocean to species annihilation. When the next big impact will be, nobody knows. But the pressure is on to predict - and intercept - its arrival. "Sooner or later we will get... a minor or major impact," Rolf Densing, who heads the Eur ... read more

Related Links
University of Colorado at Boulder
Asteroid and Comet Mission News, Science and Technology

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
In Gulf of Mexico, NASA Evaluates How Crew Will Exit Orion

Space Tourist From Asian Country to Travel to ISS in 2019

NASA Awards Mission Systems Operations Contract

ULA to launch Dream Chaser for cargo runs to ISS for Sierra Nevada

IRON AND ICE
Elon Musk says successful maiden flight for Falcon Heavy unlikely

Russia to Supply Largest Ever Number of Space Rocket Engines to US This Year

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

IRON AND ICE
Panorama Above 'Perseverance Valley'

Sol 1756: Closing time

Hubble sees Martian moon orbiting the Red Planet

Curiosity Mars Rover Begins Study of Ridge Destination

IRON AND ICE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

IRON AND ICE
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

IRON AND ICE
Cleanup Time: Russia Launches Satellite to Remove Space Junk from Orbit

Spacepath Communications Announces Innovative Frequency Converter Systems

Sorting complicated knots

Nature-inspired material uses liquid reinforcement

IRON AND ICE
Eyes Wide Open for MASCARA Exoplanet Hunter

Ancient worm burrows offer insights into early 'ecosystem engineers'

Molecular Outflow Launched Beyond Disk Around Young Star

A New Search for Extrasolar Planets from the Arecibo Observatory

IRON AND ICE
NASA's New Horizons Team Strikes Gold in Argentina

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement