Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Amazing microdroplet structures may lead to new technologies
by Staff Writers
Warsaw, Poland (SPX) May 22, 2015


Mesoscale atoms (structures formed by microdroplets of water trapped in a drop of oil) produced at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, Poland. Image courtesy IPC PAS. For a larger version of this image please go here.

Unexpected shapes of mesoscale atoms - structures built of microdroplets encapsulated within microdroplets - have been created at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, Poland. The discovery was possible with a new method for precise control over placement of tiny segments of liquid, one in another. With further progress in innovative microfluidic systems, the method may find use in medicine and materials science.

In the prestigious physics journal "Physical Review Letters" a team of researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, have unveiled a new method of controlling the shapes of structures - so called mesoatoms - formed by microdroplets placed inside another drop. The work increases the possibilities of controlling the processes of self-organization of matter. During their research, the scientists also managed for the first time to observe the formation of microdroplet structures with unexpected shapes.

It has long been known that it is possible to place inside the drop of one liquid a certain number of droplets of another immiscible liquid. It is also known that under certain conditions the internal droplets can arrange themselves into stable structures. Until now, however, it was assumed that the shapes of these structures depended only on the number of droplets forming them. As a result, the number of different structures of mesoscale atoms it was possible to obtain was very limited.

"We have shown that the shapes of the structures that spontaneously arrange themselves inside the drops depend not only on their number, but also on the relative proportions of their volume. The existence of the second parameter significantly enhances the ability to form new mesoscale atoms. As a result, we now have at our disposal a spontaneous process with a rich potential, and one that we can to an extent control," says Prof. Piotr Garstecki (IPC PAS).

Stable structures of droplets within drops are produced at IPC PAS with the help of microfluidic systems. Systems of this type are typically formed by two plates of plastic. A network of carefully designed grooves is applied to one plate and the second fulfils the role of the 'lid'.

After securing the two plates together the grooves become channels with sub-millimeter diameters, filled with a carrier fluid. If small portions of working fluid, immiscible with the carrier fluid, are injected into the microchannels, droplets form. The techniques developed at IPC PAS make it possible to precisely control the motion of multiple tiny segments of liquids.

"In the course of our research we injected equal, small portions of dyed water, one straight after another, into a channel filled with oil. Since oil is immiscible with water, a 'string' was created of a number of blue, virtually identical, microdroplets. Interesting things started to happen when such a droplet 'train', flowing in oil of one type, was injected into a channel filled with another oil immiscible with the other two fluids," says Dr. Jan Guzowski (IPC PAS; currently at Princeton University).

The surface tension of the liquid shell around the encapsulated droplets caused it to itself form a drop. During this process, the encapsulated microdroplets were subjected to considerable forces, became deformed, and organized in order to minimize the energy of the surface constraining them.

Depending on the configuration - the number of droplets within the drop and the ratio between the volumes of all the droplets - a unique structure of a mesoscale atom formed. The researchers could observe a number of distinct geometries of the atoms. A real surprise was that they could also observe structures containing all core droplets arranged in a row, one after another, just like peas in a pod.

"The configuration wherein a few droplets form a row only seems to be unstable. Our calculations show that in order to stick together in a cluster, the aligned droplets would have to undergo deformation 'on the way' requiring an input of additional energy. The flow carrying the droplets is not strong enough for this and as a result the droplets remain frozen in the original arrangement.

Finally, the whole structure looks like a group of several tennis balls pushed one the after the other into a tight shirt sleeve," says Dr. Guzowski and emphasizes that the existence of capillary barriers, preventing the spontaneous reconfiguration of the structure of microdroplets, has been presented for the first time.

The mesoscale atoms of droplets within drops obtained by the team from IPC PAS had just sub-millimeter dimensions, and were thus relatively large.

"Laboratory experiments are easier to perform on larger drops and in a manner that permits their easy observation," explains Prof. Garstecki and points out: "There are, however, no fundamental obstacles to reducing the droplet size by one or two orders of magnitude. The capillary forces that are responsible for the formation of structures are even stronger at small scales. We expect, therefore, that the process should be faster, and even more controllable when targeting sizes significantly below the millimeter scale."

The controlled production of mesoscale atoms from droplets is of particular importance for materials science. This is because materials come into being in a manner somewhat similar to structures made of building blocks: they are 'made up' of many smaller 'bricks' - tightly packed clusters of particles or atoms.

A promising area of use seems to be the transport of drugs to specific areas of the body. Each drop in the mesoscale atom could contain various therapeutic substances which would be released under different conditions. This sort of 'smart' container for medicines could carry out carefully planned drug therapy in a selected organ in the human body.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Physical Chemistry of the Polish Academy of Sciences
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Researchers measure thermoelectric behavior by Tinkertoy materials
Livermore CA (SPX) May 22, 2015
Sandia National Laboratories researchers have made the first measurements of thermoelectric behavior by a nanoporous metal-organic framework (MOF), a development that could lead to an entirely new class of materials for such applications as cooling computer chips and cameras and energy harvesting. "These results introduce MOFs as a new class of thermoelectric materials that can be tailored ... read more


TECH SPACE
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

TECH SPACE
Exploring the 'Spirit of St. Louis' Crater

The First Martian Marathon

Technique for finding signs of life on the Red Planet

Quick Detour by NASA Mars Rover Checks Ancient Valley

TECH SPACE
NASA's CubeSat Initiative aids solar sail tests in space

NASA Challenges Designers to Construct Habitat for Deep Space Exploration

The Moon or Mars: Flawed Debate, False Choice - Part One

Young Innovators Bring Creations to Life in NASA Goddard Spinoff Challenge

TECH SPACE
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

TECH SPACE
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

TECH SPACE
DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

Report: SpaceX Falcon 9 rocket certified to fly NASA missions

Fifth Vega takes shape for its flight with Sentinel-2A

TECH SPACE
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

TECH SPACE
Amazing microdroplet structures may lead to new technologies

Robotic sonar system inspired by bats

Researchers measure thermoelectric behavior by Tinkertoy materials

Defects can 'Hulk-up' materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.