Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
All directions are not created equal for nanoscale heat sources
by Staff Writers
Urbana IL (SPX) Oct 03, 2014


Schematic representation of thermal transport for small heater dimensions. Vibrational waves, or photons, that travel parallel to the surface do not help cool the hot region when its dimensions are small because they can traverse its small diameter without interacting with it. The metal-coated surface prevents phonons traveling perpendicular the surface from traversing the heated region without interaction. Image courtesy Richard Wilson, University of Illinois.

Thermal considerations are rapidly becoming one of the most serious design constraints in microelectronics, especially on submicron scale lengths. A study by researchers from the University of Illinois at Urbana-Champaign has shown that standard thermal models will lead to the wrong answer in a three-dimensional heat-transfer problem if the dimensions of the heating element are on the order of one micron or smaller.

"As materials shrink, the rules governing heat transfer change as well," explained David Cahill, a professor of materials science and engineering at Illinois.

"Our current understanding of nanoscale thermal transport isn't nuanced enough to quantitatively predict when standard theory won't work. This can impact the design of high-power RF devices that are widely used in the telecommunication industry-for example, 4G wireless infrastructure.

"The transistor spacing in RF devices is rapidly approaching length-scales where theory based on the diffusion of heat won't be valid, and the engineering models currently used won't accurately predict the operating temperature of the device. The temperature is a key factor for predicting mean-time to failure"

"Our research focuses on understanding the physics of thermal transport on submicron length-scales in the presence of an interface," explained Richard Wilson, lead author of the study published in Nature Communications.

"Our study focused on a variety of crystals that have controlled differences in thermal transport properties, such as Si, doped Si, and SiGe alloys," Wilson said. "We coated these crystals with a thin metal film, heated the surface with a laser beam, and then recorded the temperature evolution of the sample.

"On length-scales shorter than the phonon mean-free-paths of the crystal, heat is transported ballistically, not diffusively. Interfaces between materials further complicate the heat-transfer problem by adding additional thermal resistance."

Researchers found that when the radius of the laser beam used to heat the metal coated crystals was above ten microns, the predictions made by assuming heat is transported diffusively matched the experimental observations. However, when the radius neared one micron, diffusive theory over-predicted the amount of energy carried away from the heated surface.

"We discovered fundamental differences in how heat is transported over short versus long distances. Fourier theory, which assumes heat is transported by diffusion, predicts that a cubic crystal like silicon will carry heat equally well in all directions. We demonstrated that on short length-scales heat is not carried equally well in all directions.

"By measuring the temperature of the sample surface as a function of distance from the center of the heated region, we were able to determine how far heat was traveling parallel to the surface, and deduce that, when heater dimensions are small, significantly less heat is carried parallel to the surface than Fourier theory predicts," Wilson stated.

Wilson and Cahill also studied the effect of interfaces on nanoscale thermal transport.

"It's been well known for 75 years that the presence of a boundary adds a thermal boundary resistance to the heat-transfer problem, but it's always been assumed that this boundary resistance was localized to the interface and independent of the thermal transport properties of the underlying material," Cahill added.

"Our experiments show that these assumptions aren't generally valid. In particularly for crystals with defects, the boundary resistance is distributed and strongly dependent on the defect concentration. "

Wilson and Cahill also provided a theoretical description of their results that can be used by device engineers to better manage heat and temperature in nanoscale devices.

.


Related Links
University of Illinois College of Engineering
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Engineers show light can play seesaw at the nanoscale
Minneapolis MN (SPX) Sep 26, 2014
University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major implications for creating faster and more efficient optical devices for computation and communication. The research paper by University of Minnesota electrical and computer engineering ass ... read more


NANO TECH
Turning the Moon into a cosmic ray detector

Russia to Launch Full-Scale Moon Exploration Next Decade

Lunar explorers will walk at higher speeds than thought

Year's final supermoon is a Harvest Moon

NANO TECH
India's Mars Orbiter Cost Only 11 Percent of NASA's Maven Probe: Reports

India's spacecraft beams back first Mars photos

NASA Rover Drill Pulls First Taste From Mars Mountain

Back to Driving

NANO TECH
Crew selected for eight-month Mars simulation

Orion Recovery Tests Help Teams Prepare for December Flight

NASA technologies to be studied for commercialization

NASA Seeks Best and Brightest for Space Technology Fellowships

NANO TECH
China's first space lab in operation for over 1000 days

China Exclusive: Mars: China's next goal?

Astronauts eye China's future space station

China eyes working with other nations as station plans develop

NANO TECH
NASA Expands Commercial Space Program

Yelena Serova becomes first Russian woman aboard space station

Crew including first woman cosmonaut in 17 years blasts off for ISS

A Giant Among Earth Satellites

NANO TECH
Arianespace's lightweight Vega launcher is readied for its mission with the European IXV spaceplane

Soyuz Rocket Awaiting Launch at Baikonur Cosmodrome

Elon Musk, Rick Perry attend groundbreaking for Texas spaceport

France raises heat on decision for next Ariane rocket

NANO TECH
New milestone in the search for water on distant planets

Clear skies on exo-Neptune

Distant planet's atmosphere shows evidence of water vapor

Chandra Finds Planet That Makes Star Act Deceptively Old

NANO TECH
Fed Up With Federal Inaction, States Act Alone on Cap-and-Trade

Microsoft to tap $2-trillion Indian cloud market

How to make stronger, 'greener' cement

Putting the squeeze on quantum information




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.