Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CARBON WORLDS
Adding hydrogen to graphene
by Staff Writers
Daejeon, South Korea (SPX) Nov 08, 2016


The images show a graphene flake before (a), two minutes (b), and eight minutes (c), after exposure to a solution of lithium and liquid ammonia (Birch-type reaction). Graphene gets gradually hydrogenated starting from the edges. (Reprinted with permission from Zhang X. et al., JACS, Copyright 2016 American Chemical Society). Image courtesy IBS. For a larger version of this image please go here.

Adding hydrogen to graphene could improve its future applicability in the semiconductor industry, when silicon leaves off. Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science (IBS) have recently gained further insight into this chemical reaction. Published in Journal of the American Chemical Society, these findings extend the knowledge of the fundamental chemistry of graphene and bring scientists perhaps closer to realizing new graphene-based materials.

Understanding how graphene can chemically react with a variety of chemicals will increase its utility. Indeed, graphene has superior conductivity properties, but it cannot be directly used as an alternative to silicon in semiconductor electronics because it does not have a bandgap, that is, its electrons can move without climbing any energy barrier.

Hydrogenation of graphene opens a bandgap in graphene, so that it might serve as a semiconductor component in new devices.

While other reports describe the hydrogenation of bulk materials, this study focuses on hydrogenation of single and few-layers thick graphene. IBS scientists used a reaction based on lithium dissolved in ammonia, called the "Birch-type reaction", to introduce hydrogen onto graphene through the formation of C-H bonds.

The research team discovered that hydrogenation proceeds rapidly over the entire surface of single-layer graphene, while it proceeds slowly and from the edges in few-layer graphene. They also showed that defects or edges are actually necessary for the reaction to occur under the conditions used, because pristine graphene with the edges covered in gold does not undergo hydrogenation.

Using bilayer and trilayer graphene, IBS scientists also discovered that the reagents can pass between the layers, and hydrogenate each layer equally well. Finally, the scientists found that the hydrogenation significantly changed the optical and electric properties of the graphene.

"A primary goal of our Center is to undertake fundamental studies about reactions involving carbon materials. By building a deep understanding of the chemistry of single-layer graphene and a few layer graphene, I am confident that many new applications of chemically functionalized graphenes could be possible, in electronics, photonics, optoelectronics, sensors, composites, and other areas," notes Rodney Ruoff, corresponding author of this paper, CMCM director, and UNIST Distinguished Professor at the Ulsan National Institute of Science and Technology (UNIST).

Related Journal Article


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Institute for Basic Science
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
UAE to host region's first carbon capture plant
Abu Dhabi (AFP) Nov 5, 2016
The Middle East's first factory to suck carbon dioxide out of the air has begun operating in the United Arab Emirates, developers and a minister said Saturday. The plant - said to be the first of its kind in the Middle East and North Africa - is to capture up to 800,000 tonnes of CO2 a year, the Carbon Capture Company Al Reyadah said. It will capture CO2 emissions from major steel prod ... read more


CARBON WORLDS
Progress, but uphill slog for women in tech

NavCube could support an X-ray communication test in space

NASA, Navy practice Orion module recovery

Weightless tourism just 4 years away

CARBON WORLDS
JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

Aerojet Rocketdyne completes CST launch abort engine hot fire tests

China launches first heavy-lift rocket

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

CARBON WORLDS
Mars' ionosphere shaped by crustal magnetic fields

Iron-Loving Bacteria A Model For Mars Life

Opportunity makes small U-turn to reach summit of Spirit Mound

'Millions' needed to continue Europe's Mars mission: ESA chief

CARBON WORLDS
Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

Long March-7 being assembled, to transport Tianzhou-1

Kuaizhou-1 scheduled to launch in December

CARBON WORLDS
AsiaSat wins patent for effective satellite broadband connectivity to aircraft

Sun-observing MinXSS CubeSat to yield insights into solar flare energetics

Optus achieves full certification of 4 teleports

ISRO's World record bid: Launching 83 satellites on single rocket

CARBON WORLDS
We gather here today to join lasers and anti-lasers

Trace metal recombination centers kill LED efficiency

Studying structure to understand function within 'material families'

Study: Math scares everyone, even physicists

CARBON WORLDS
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

CARBON WORLDS
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement