. 24/7 Space News .
WATER WORLD
Acidified ocean water widespread along North American West Coast
by Staff Writers
Corvallis OR (SPX) Jun 01, 2017


File image of the infamous blob.

A three-year survey of the California Current System along the West Coast of the United States found persistent, highly acidified water throughout this ecologically critical nearshore habitat, with "hotspots" of pH measurements as low as any oceanic surface waters in the world.

The researchers say that conditions will continue to worsen because the atmospheric carbon dioxide primarily to blame for this increase in acidification has been rising substantially in recent years.

One piece of good news came out of the study, which was published this week in Scientific Reports. There are "refuges" of more moderate pH environments that could become havens for some marine organisms to escape more highly acidified waters, and which could be used as a resource for ecosystem management.

"The threat of ocean acidification is global and though it sometimes seems far away, it is happening here right now on the West Coast of the United States and those waters are already hitting our beaches," said Francis Chan, a marine ecologist at Oregon State University and lead author on the study.

"The West Coast is very vulnerable. Ten years ago, we were focusing on the tropics with their coral reefs as the place most likely affected by ocean acidification. But the California Current System is getting hit with acidification earlier and more drastically than other locations around the world."

A team of researchers developed a network of sensors to measure ocean acidification over a three-year period along more than 600 miles of the West Coast. The team observed near-shore pH levels that fell well below the global mean pH of 8.1 for the surface ocean, and reached as low as 7.4 at the most acidified sites, which is among the lowest recorded values ever observed in surface waters.

The lower the pH level, the higher the acidity. Previous studies have documented a global decrease of 0.11 pH units in surface ocean waters since the beginning of the Industrial Revolution. Like the Richter scale, the pH scale in logarithmic, so that a 0.11 pH unit decrease represents an increase in acidity of approximately 30 percent.

Highly acidified ocean water is potentially dangerous because many organisms are very sensitive to changes in pH. Chan said negative impacts already are occurring in the California Current System, where planktonic pteropods - or small swimming snails - were documented with severe shell dissolution.

"This is about more than the loss of small snails," said Richard Feely, senior scientist with the National Oceanic and Atmospheric Administration's Pacific Marine Environmental Laboratory. "These pteropods are an important food source for herring, salmon and black cod, among other fish. They also may be the proverbial 'canary in the coal mine' signifying potential risk for other species, including Dungeness crabs, oysters, mussels, and many organisms that live in tidepools or other near-shore habitats."

Previous studies at OSU have chronicled the impact of acidified water on the Northwest oyster industry.

Chan said the team's observations, which included a broad-scale ocean acidification survey via ship by NOAA, did not vary significantly over the three years - even with different conditions, including a moderate El Nino event.

"The highly acidified water was remarkably persistent over the three years," Chan said. "Hotspots stayed as hotspots, and refuges stayed as refuges. This highly acidified water is not in the middle of the Pacific Ocean; it is right off our shore. Fortunately, there are swaths of water that are more moderate in acidity and those should be our focus for developing adaptation strategies."

The researchers say there needs to be a focus on lowering stressors to the environment, such as maintaining healthy kelp beds and sea grasses, which many believe can partially mitigate the effects of increasing acidity.

Further, the moderately acidified refuge areas can be strategically used and managed, Chan pointed out.

"We probably have a hundred or more areas along the West Coast that are protected in one way or another, and we need to examine them more closely," he said. "If we know how many of them are in highly acidified areas and how many are in refuge sites, we can use that information to better manage the risks that ocean acidification poses."

Managing for resilience is a key, the researchers conclude.

"Even though we are seeing compromised chemistry in our ocean waters, we still have a comparably vibrant ecosystem," Chan said. "Our first goal should be to not make things worse. No new stresses. Then we need to safeguard and promote resilience. How do we do that? One way is to manage for diversity, from ensuring multiple-age populations to maintaining deep gene pools.

"The greater the diversity, the better chance of improving the adaptability of our marine species."

Chan, a faculty member in the College of Science at Oregon State University, was a member of the West Coast Ocean Acidification and Hypoxia Panel appointed by the governments of California, Oregon, Washington and British Columbia.

Research paper

WATER WORLD
Marine species distribution shifts will continue under ocean warming
Woods Hole, MA (SPX) May 31, 2017
Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century. Projected increases in surface to bottom waters of 6.6 to 9 degrees ... read more

Related Links
Oregon State University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

Conch shells may inspire better helmets, body armor

MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

WATER WORLD
Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

WATER WORLD
Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

WATER WORLD
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

WATER WORLD
New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

New Target Date for Second Iridium NEXT Launch

Satellite industry supports FCC proposal to reduce internet regulations for service providers

WATER WORLD
New method allows real-time monitoring of irradiated materials

Solving the riddle of the snow globe

Bamboo inspires optimal design for lightness and toughness

Computer scientists simplify deep learning

WATER WORLD
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Water forms superstructure around DNA, new study shows

WATER WORLD
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.