Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Accelerating universe? Not so fast
by Staff Writers
Tucson AZ (SPX) Apr 14, 2015


That same galaxy in a NASA Swift image is shown, with bars indicating the location of supernova SN 2011fe. The Swift image is a false-color image with UV emission blue and optical emission red. Image courtesy NASA/Swift.

Certain types of supernovae, or exploding stars, are more diverse than previously thought, a University of Arizona-led team of astronomers has discovered. The results, reported in two papers published in the Astrophysical Journal, have implications for big cosmological questions, such as how fast the universe has been expanding since the Big Bang.

Most importantly, the findings hint at the possibility that the acceleration of the expansion of the universe might not be quite as fast as textbooks say.

The team, led by UA astronomer Peter A. Milne, discovered that type Ia supernovae, which have been considered so uniform that cosmologists have used them as cosmic "beacons" to plumb the depths of the universe, actually fall into different populations. The findings are analogous to sampling a selection of 100-watt light bulbs at the hardware store and discovering that they vary in brightness.

"We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances -- and thus when the universe was younger," said Milne, an associate astronomer with the UA's Department of Astronomy and Steward Observatory. "There are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn't appear to be the case."

The discovery casts new light on the currently accepted view of the universe expanding at a faster and faster rate, pulled apart by a poorly understood force called dark energy. This view is based on observations that resulted in the 2011 Nobel Prize for Physics awarded to three scientists, including UA alumnus Brian P. Schmidt.

The Nobel laureates discovered independently that many supernovae appeared fainter than predicted because they had moved farther away from Earth than they should have done if the universe expanded at the same rate. This indicated that the rate at which stars and galaxies move away from each other is increasing; in other words, something has been pushing the universe apart faster and faster.

"The idea behind this reasoning," Milne explained, "is that type Ia supernovae happen to be the same brightness -- they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.

"The faraway supernovae should be like the ones nearby because they look like them, but because they're fainter than expected, it led people to conclude they're farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past."

Milne and his co-authors -- Ryan J. Foley of the University of Illinois at Urbana-Champaign, Peter J. Brown at Texas A and M University and Gautham Narayan of the National Optical Astronomy Observatory, or NOAO, in Tucson -- observed a large sample of type Ia supernovae in ultraviolet and visible light. For their study, they combined observations made by the Hubble Space Telescope with those made by NASA's Swift satellite.

The data collected with Swift were crucial because the differences between the populations -- slight shifts toward the red or the blue spectrum -- are subtle in visible light, which had been used to detect type Ia supernovae previously, but became obvious only through Swift's dedicated follow-up observations in the ultraviolet.

"These are great results," said Neil Gehrels, principal investigator of the Swift satellite, who co-authored the first paper. "I am delighted that Swift has provided such important observations, which have been made toward a science goal that is completely independent of the primary mission. It demonstrates the flexibility of our satellite to respond to new phenomena swiftly."

"The realization that there were two groups of type Ia supernovae started with Swift data," Milne said. "Then we went through other datasets to see if we see the same. And we found the trend to be present in all the other datasets.

"As you're going back in time, we see a change in the supernovae population," he added. "The explosion has something different about it, something that doesn't jump out at you when you look at it in optical light, but we see it in the ultraviolet.

"Since nobody realized that before, all these supernovae were thrown in the same barrel. But if you were to look at 10 of them nearby, those 10 are going to be redder on average than a sample of 10 faraway supernovae."

The authors conclude that some of the reported acceleration of the universe can be explained by color differences between the two groups of supernovae, leaving less acceleration than initially reported. This would, in turn, require less dark energy than currently assumed.

"We're proposing that our data suggest there might be less dark energy than textbook knowledge, but we can't put a number on it," Milne said. "Until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population."

The authors pointed out that more data have to be collected before scientists can understand the impact on current measures of dark energy. Scientists and instruments in Arizona will play important roles in these studies, according to Milne.

These include projects led by NOAO; the Large Synoptic Survey Telescope, or LSST, whose primary mirror was produced at the UA; and a camera built by the UA's Imaging Technology Lab for the Super-LOTIS telescope on Kitt Peak southwest of Tucson. Super-LOTIS is a robotic telescope that will use the new camera to follow up on gamma-ray bursts -- the "muzzle flash" of a supernova -- detected by Swift.

The research paper is published online here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Arizona
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Pennies reveal new insights on the nature of randomness
Princeton NJ (SPX) Mar 06, 2015
The concept of randomness appears across scientific disciplines, from materials science to molecular biology. Now, theoretical chemists at Princeton have challenged traditional interpretations of randomness by computationally generating random and mechanically rigid arrangements of two-dimensional hard disks, such as pennies, for the first time. "It's amazing that something so simple as th ... read more


TIME AND SPACE
A new view of the moon's formation

Moon formed when young Earth and little sister collided

Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

TIME AND SPACE
Mars has belts of glaciers consisting of frozen water

Mars' dust-covered glacial belts may contain tons of water

Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

TIME AND SPACE
How To Train Your Astronauts

May I go to space once more asks Brian Duffy

Plants Use Sixth Sense for Growth Aboard the Space Station

Air Scrubber Plus Brings Space Age Technology Down To Earth

TIME AND SPACE
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TIME AND SPACE
NASA Extends Lockheed Martin Contract To Prepare Critical Cargo For ISS

Special 3-D delivery from space to Marshall Space Flight Center

NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space

TIME AND SPACE
Russia to Launch Nine Rockets Into Space in April-June

Soyuz Installed at Baikonur, Expected to Launch Wednesday

THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz ready March 27 flight to deploy two Galileo navsats

TIME AND SPACE
The Solar System and Beyond is Awash in Water

Small solar eruptions can have profound effects on unprotected planets

Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

TIME AND SPACE
Heat-Converting Material Patents Licensed

Amazon gives new power to personal assistant, 'Alexa'

First ASU-built space instrument ready for final lab tests

Terrain-following autopilot capability eyed for Rafale fighters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.