. 24/7 Space News .
TIME AND SPACE
A single ion impacts a million water molecules
by Staff Writers
Lausanne, Switzerland (SPX) Apr 15, 2016


A single ion has an influence on millions of water molecules, i.e. 10,000 times more than previously thought. Image courtesy LPB/EPFL. For a larger version of this image please go here.

Water is simple and complex at the same time. A single water molecule (H20) is made up of only 3 atoms. Yet the collective behavior of water molecules is unique and continues to amaze us. Water molecules are linked together by hydrogen bonds that break and form several thousands of billions of times per second. These bonds provide water with unique and unusual properties. Living organisms contain around 60% water and salt. Deciphering the interactions among water, salt and ions is thus fundamentally important for understanding life.

Researchers at EPFL's Laboratory for fundamental BioPhotonics, led by Sylvie Roke, have probed the influence of ions on the structure of water with unprecedentedly sensitive measurements. According to their multi-scale analyses, a single ion has an influence on millions of water molecules, i.e. 10,000 times more than previously thought.

In an article appearing in Science Advances, they explain how a single ion can "twist" the bonds of several million water molecules over a distance exceeding 20 nanometers causing the liquid to become "stiffer". "Until now it was not possible to see beyond a hundred molecules. Our measurements show that water is much more sensitive to ions than we thought," said Roke, who was also surprised by this result.

The molecules line up around the ions
Water molecules are made up of one negatively charged oxygen atom and two positively charged hydrogen atoms. The Mickey Mouse-shaped molecule therefore does not have the same charge at its center as at its extremities.

When an ion, which is an electrically charged atom, comes into contact with water, the network of hydrogen bonds is perturbed. The perturbation spreads over millions of surrounding molecules, causing water molecules to align preferentially in a specific direction. This can be thought of as water molecules "stiffening their network" between the various ions.

From atomistic to macroscopic length scales
Water's behavior was tested with three different approaches: ultrafast optical measurements, which revealed the arrangement of molecules on the nanometric scale; a computer simulation on the atomic scale; and measurement of the water's surface structure and tension, which was done at the macroscopic level.

"For the last method, we simply dipped a thin metal plate into the water and pulled gently using a tensiometer to determine the water's resistance," said Roke.

"We observed that the presence of a few ions makes it easier to pull the plate out, that is, ions reduce the surface resistance of water. This strange effect had already been observed in 1941, but it remained unexplained until now. Through our multiscale analysis we were able to link it to ion-induced stiffening of the bulk hydrogen bond network: a stiffer bulk results in a comparatively more flexible surface."

Testing different salts and different "waters"
The researchers carried out the same experiment with 21 different salts: they all affected water in the same way. Then they studied the effect of ions on heavy water, whose hydrogen atoms are heavy isotopes (with an additional neutron in the nucleus). This liquid is almost indistinguishable from normal water. But here the properties are very different. To perturb the heavy water in the same way, it required a concentration of ions six times higher. Further evidence of the uniqueness of water.

No link with water memory
Roke and her team are aware that it might be tempting to link these stunning results to all sorts of controversial beliefs about water. They are however careful to distance themselves from any far-fetched interpretation. "Our research has nothing to do with water memory or homeopathy," she said.

"We collect scientific data, which are all verifiable. To prove the role of water in homeopathy, another million-billion-billion water molecules would have to be affected to even come close, and even then we are not certain.

The new discovery about the behavior of water will be useful in fundamental research, and in other areas too. The interaction between water and ions is omnipresent in biological processes related to enzymes, ion channels and protein folding. Every new piece of knowledge gives greater insight into how life works.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Exotic quantum effects can govern the chemistry around us
Warsaw, Poland (SPX) Apr 14, 2016
Objects of the quantum world are of a concealed and cold-blooded nature: they usually behave in a quantum manner only when they are significantly cooled and isolated from the environment. Experiments carried out by chemists and physicists from Warsaw have destroyed this simple picture. It turns out that not only does one of the most interesting quantum effects occur at room temperature and highe ... read more


TIME AND SPACE
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

TIME AND SPACE
Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

Help keep heat on Mars Express through data mining

TIME AND SPACE
NASA begins testing of revolutionary e-sail technology

Concept's success buoys Commercial Crew's path to flight

A US Department of Space

New, fast solar wind propulsion system is aim of NASA, UAH study

TIME AND SPACE
China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

TIME AND SPACE
NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

TIME AND SPACE
Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

TIME AND SPACE
1917 astronomical plate has first-ever evidence of exoplanetary system

Stars strip away atmospheres of nearby super-Earths

Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

TIME AND SPACE
Cooling down the hot side of space hardware

Brittle is better for making cement

Catalyst could make production of key chemical more eco-friendly

Graphene is both transparent and opaque to radiation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.