. 24/7 Space News .
ENERGY TECH
A seaweed derivative could be just what lithium-sulfur batteries need
by Staff Writers
Berkeley CA (SPX) Jun 16, 2017


Berkeley Lab battery scientist Gao Liu.

Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications. However, they suffer from significant capacity fading. Now scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have made a surprising discovery that could fix this problem.

In research led by Gao Liu, the team unexpectedly found that carrageenan, a seaweed derivative, acts as a stabilizer in lithium-sulfur batteries. Better stability allows for more cycling and an extended lifetime. Their study was published in the journal Nano Energy in a paper titled, "Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery."

"There's a lot of demand for energy storage, but there's very little chemistry that can meet the cost target," said Liu, the corresponding author of the paper. "Sulfur is a very low-cost material - it's practically free. And the energy capacity is much higher than that of lithium-ion. So lithium-sulfur is one chemistry that can potentially meet the target."

Rechargeable lithium-sulfur batteries have some limited commercial applications currently, but the "critical killer" in the chemistry is that the sulfur starts to dissolve, creating what is called the polysulfide shuttling effect. In trying to address this problem, Liu was experimenting with the binder, which is the substance that holds all the active materials in a battery cell together.

"A binder is like glue, and normally battery designers want a glue that is inert," Liu said. "This binder we tried worked really well. We asked why, and we discovered it's reacting - it reacted immediately with the polysulfide. It formed a covalent bonding structure."

By chemically reacting with the sulfur, the binder was able to stop it from dissolving. Once the researchers figured that out, they looked around for a naturally occurring material that would do the same thing. They landed upon carrageenan, a substance extracted from red seaweeds and in the same functional group (or group of atoms, with similar chemical reactivity) as the synthetic polymer they used in their initial experiments.

"We looked for something that was economical and readily available," Liu said. "It turns out carrageenan is used as a food thickener. And it actually worked just as well as the synthetic polymer - it worked as a glue and it immobilized the polysulfide, making a really stable electrode."

Visualizing in situ reactions
Liu worked with Jinghua Guo of Berkeley Lab's Advanced Light Source, one of the world's brightest sources of ultraviolet and soft X-ray beams, to make his discovery.

"The light source provides unique X-ray based tools," Guo said. "We want the tool to monitor the electrochemistry simultaneously while the battery is charging. In this case, we made a dedicated battery cell with the materials, then used X-rays to monitor the process under in situ conditions."

Liu added: "You can't do this kind of experiment anywhere else. In this case we have a unique beamline to detect sulfur. It's always a lot of effort to design the tool for in situ. Ex situ is easy, but in this case, ex situ didn't give you the result. With the in situ cell, we were able to watch where the sulfur goes. Turns out, it doesn't go anywhere. That was really cool."

General Motors, an industry research partner of Berkeley Lab's Energy Storage and Distributed Resources Division, confirmed Liu's research findings. "They independently tested it and saw the same effect we saw - in fact the stability was even better," Liu said.

Radical departure
The results open up an entirely new way of thinking about battery chemistry, Liu noted. "Scientifically, it's a totally different concept, of a binder that is reactive rather than inert," he said. "People don't think that way. They think a binder's function is to physically hold things together. We found, no, we need a way to chemically bind the polysulfide."

Liu and his group have been working on lithium-sulfur batteries for several years. They published a paper in Nano Letters last year on a novel lithium-sulfur electrode structure based on nature's own superefficient ant nest.

With this breakthrough to stabilize lithium-sulfur batteries Liu is now seeking to improve the lifetime of lithium-sulfur batteries even further. "We want to get to thousands of cycles," he said.

Lithium-sulfur batteries have more than twice the energy density of lithium-ion batteries, which now dominate the market. They are also much more lightweight so they have potential application in airplanes and drones. In fact, lithium-sulfur batteries provided nighttime power in the record-setting 14-day solar-powered flight of the Zephyr, an unmanned aircraft, in 2010.

Liu, Guo, and their team will continue to work on understanding the chemical reactions in the cell. "After this polymer binds with sulfur, what happens next? How does it react with sulfur, and is it reversible?" Liu said. "Understanding that will allow us to be able to develop better ways to further improve the life of lithium-sulfur batteries."

Research paper

ENERGY TECH
Batteries from scrap metal
Washington DC (SPX) Jun 12, 2017
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries. As reported in the journal Angewandte Chemie, the rust is converted directly into a compact layer with a grid structure that can sto ... read more

Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Return to the blue

Russia's Roscosmos May Provide Indian Astronauts With Training in Future

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

ENERGY TECH
Orbex reveals space rocket factory

Developing Landing Tech for Space

OHB Italia sign contract to launch PRISMA Italian satellite with Arianespace

Arianespace to orbit Airbus' upcoming constellation of observation satellites

ENERGY TECH
No One Under 20 Has Experienced a Day Without NASA at Mars

Mars Orbiter spots rover ascending Mount Sharp

Opportunity Straightens Wheel, Resumes Driving

India's Mars Orbiter Mission Completes First 1,000 Earth Days

ENERGY TECH
With a Strong Partner Like Russia, Nothing Would Stop China's New Space Station

China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

New broadcasting satellite fails to enter preset orbit

ENERGY TECH
Gravitational wave mission selected, planet-hunting mission moves forward

Boeing Streamlining Defense and Space Unit to boost competitiveness

Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

ENERGY TECH
A new virtual approach to science in space

Helium droplets offer new precision to single-molecule laser measurement

Magnetic space tug could target dead satellites

New computing system takes its cues from human brain

ENERGY TECH
New Hunt for Earth-like Planets

NASA discovers 10 new Earth-size exoplanets

NASA releases Kepler Survey Catalog with 100s of new exoplanet candidates

New branch in family tree of exoplanets discovered

ENERGY TECH
NASA Completes Study of Future 'Ice Giant' Mission Concepts

The curious case of the warped Kuiper Belt

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System

New Horizons Team Digs into New Data on Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.