. 24/7 Space News .
TIME AND SPACE
A quadrillionth of a second in slow motion
by Staff Writers
Munich, Germany (SPX) Feb 27, 2018

This is a view into the measuring chamber combining two pump-probe spectroscopy techniques thus allowing to observe and control ultrafast processes with attosecond resolution.

Many chemical processes run so fast that they are only roughly understood. To clarify these processes, a team from the Technical University of Munich (TUM) has now developed a methodology with a resolution of quintillionths of a second. The new technology stands to help better understand processes like photosynthesis and develop faster computer chips.

An important intermediary step in many chemical processes is ionization. A typical example of this is photosynthesis. The reactions take only a few femtoseconds (quadrillionths of a second) or even merely a few hundred attoseconds (quintillionths of a second). Because they run so extremely fast, only the initial and final products are known, but not the reaction paths or the intermediate products.

To observe such ultrafast processes, science needs a measurement technology that is faster than the observed process itself. So-called "pump-probe spectroscopy" makes this possible.

Here, the sample is excited using an initial laser pulse, which sets the reaction into motion. A second, time-delayed pulse queries the momentary state of the process. Multiple repetitions of the reaction with different time delays result in individual stop-motion images, which can then be compiled into a "film clip".

Two eyes see more than one
Now, a team of scientists headed by Birgitta Bernhardt, a former staff member at the Chair of Laser and X-ray Physics at TU Munich and meanwhile junior professor at the Institute of Applied Physics at the University of Jena, have for the first time succeeded in combining two pump-probe spectroscopy techniques using the inert gas krypton. This allowed them to shed light on the ultrafast ionization processes in a precision that has simply not been possible hitherto.

"Prior to our experiment, one could observe either which part of the exciting light was absorbed by the sample over time or measure what kind of and how many ions were created in the process," explains Bernhardt. "We have now combined the two techniques, which allows us to observe the precise steps by which the ionization takes place, how long these intermediate products exist and what precisely the exciting laser pulse causes in the sample."

Ultrafast processes under control
The combination of the two measuring techniques allows the scientists not only to record the ultrafast ionization processes. Thanks to the variation in the intensity of the second, probing laser pulse, they can now, for the first time, also control and in this way also influence the ionization dynamics.

"This kind of control is a very powerful instrument," explains Bernhardt. "If we can precisely understand and even influence fast ionization processes, we are able to learn a lot about light-driven processes like photosynthesis - especially about the initial moments in which this complex machinery is set into motion and which is hardly understood to date."

Ultrafast computers
The technology developed by Bernhardt and her colleagues is also interesting for the development of new, faster computer chips in which the ionization of silicon plays a significant role. If the ionization states of silicon can not only be sampled on such a short time scale, but can also be set - as the first experiments with krypton suggest - scientists might one day be able to use this to develop novel and even faster computer technologies.

Research paper


Related Links
Technical University of Munich
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
NASA Tests Atomic Clock for Deep Space Navigation
Greenbelt MD (SPX) Feb 08, 2018
In deep space, accurate timekeeping is vital to navigation, but many spacecraft lack precise timepieces on board. For 20 years, NASA's Jet Propulsion Laboratory in Pasadena, California, has been perfecting a clock. It's not a wristwatch; not something you could buy at a store. It's the Deep Space Atomic Clock (DSAC), an instrument perfect for deep space exploration. Currently, most missions rely on ground-based antennas paired with atomic clocks for navigation. Ground antennas send narrowly focuse ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Aerospace introduces new Senior Advisory Council for space policy

Cosmonaut, two US astronauts return to Earth from ISS

ISS Expedition 54 crew land safely in Kazakhstan

International team publishes roadmap to enhance radioresistance for space colonization

TIME AND SPACE
Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

TIME AND SPACE
Atacama Desert study offers glimpse of what life on Mars could look like

Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Dormant desert life hints at possibilities on Mars

TIME AND SPACE
China plans rocket sea-launch

China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

TIME AND SPACE
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

Iridium Certus broadband readies for DOD wsers with COMSAT

TIME AND SPACE
Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

Squid skin could be the solution to camouflage material

TIME AND SPACE
When two species become one: New study examines 'speciation reversal'

Alien life in our Solar System? Study hints at Saturn's moon

When do aging brown dwarfs sweep the clouds away?

Study: Mushrooms became hallucinogenic to keep away insects

TIME AND SPACE
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.